Zhang Zhiyuan, Kondratowicz Christopher, Smith Jacob, Kucheryavy Pavel, Ouyang Junjie, Xu Yijie, Desmet Elizabeth, Kurdziel Sophia, Tang Eddie, Adeleke Micheal, Lele Aditya Dilip, Martirez John Mark, Chi Miaofang, Ju Yiguang, He Huixin
Department of Chemistry, Rutgers, the State University of New Jersey, Newark, New Jersey 07102, United States.
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States.
ACS Energy Lett. 2025 Jun 22;10(7):3349-3358. doi: 10.1021/acsenergylett.5c01034. eCollection 2025 Jul 11.
Electrocatalytic nitrogen reduction (eNRR) offers a green pathway for the production of NH from N and HO under ambient conditions. Transition metal oxynitrides (TMO N ) are among the most promising catalysts but face challenges in achieving a high yield and faradaic efficiency (FE). This work develops a hybrid WO N /WO catalyst with a unique heterogeneous interfacial complexion (HIC) structure. This design enables generation and delivery of highly active hydrogen atoms (H*) in acidic electrolytes, promoting nitrogen hydrogenation and the formation of nitrogen vacancies (Nv) on the WO N surface. This significantly enhances the selectivity of eNRR for NH synthesis while suppressing the hydrogen evolution reaction (HER). A simple two-step fabrication processmicrowave hydrothermal growth followed by plasma-assisted surface nitridationwas developed to fabricate the designed catalyst electrode, achieving an NH yield of 3.2 × 10 mol·cm·s with 40.1% FE, outperforming most TMN/TMO N electrocatalysts. Multiple control experiments confirm that the eNRR follows an HIC-enhanced Mars-van Krevelen (MvK) mechanism.
电催化氮还原(eNRR)为在环境条件下由N₂和H₂O生产NH₃提供了一条绿色途径。过渡金属氮氧化物(TMOₓNᵧ)是最有前景的催化剂之一,但在实现高产量和法拉第效率(FE)方面面临挑战。这项工作开发了一种具有独特异质界面络合物(HIC)结构的混合WOₓNᵧ/WO₃催化剂。这种设计能够在酸性电解质中产生并传递高活性氢原子(H*),促进氮氢化以及WOₓNᵧ表面氮空位(Nv)的形成。这显著提高了eNRR合成NH₃的选择性,同时抑制析氢反应(HER)。开发了一种简单的两步制造工艺——微波水热生长,然后进行等离子体辅助表面氮化——来制造设计的催化剂电极,实现了3.2×10⁻¹⁰ mol·cm⁻²·s⁻¹的NH₃产量,FE为为40.1%,优于大多数TMN/TMOₓNᵧ电催化剂。多项对照实验证实,eNRR遵循HIC增强的Mars-van Krevelen(MvK)机制。