Suppr超能文献

[指导德国新冠疫情重症监护能力的预测模型]

[Forecasting models to guide intensive care COVID-19 capacities in Germany].

作者信息

Grodd Marlon, Refisch Lukas, Lorenz Fabian, Fischer Martina, Lottes Matthäus, Hackenberg Maren, Kreutz Clemens, Grabenhenrich Linus, Binder Harald, Wolkewitz Martin

机构信息

Institut für Medizinische Biometrie und Statistik, Medizinische Fakultät und Universitätsklinikum, Albert-Ludwigs-Universität Freiburg, Freiburg, Deutschland.

Robert Koch-Institut, Berlin, Deutschland.

出版信息

Med Klin Intensivmed Notfmed. 2023 Mar;118(2):125-131. doi: 10.1007/s00063-022-00903-x. Epub 2022 Mar 10.

Abstract

BACKGROUND

Time-series forecasting models play a central role in guiding intensive care coronavirus disease 2019 (COVID-19) bed capacity in a pandemic. A key predictor of future intensive care unit (ICU) COVID-19 bed occupancy is the number of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the general population, which in turn is highly associated with week-to-week variability, reporting delays, regional differences, number of unknown cases, time-dependent infection rates, vaccinations, SARS-CoV‑2 virus variants, and nonpharmaceutical containment measures. Furthermore, current and also future COVID ICU occupancy is significantly influenced by ICU discharge and mortality rates.

METHODS

Both the number of new SARS-CoV‑2 infections in the general population and intensive care COVID-19 bed occupancy rates are recorded in Germany. These data are statistically analyzed on a daily basis using epidemic SEIR (susceptible, exposed, infection, recovered) models using ordinary differential equations and multiple regression models.

RESULTS

Forecast results of the immediate trend (20-day forecast) of ICU occupancy by COVID-19 patients are made available to decision makers at various levels throughout the country.

CONCLUSION

The forecasts are compared with the development of available ICU bed capacities in order to identify capacity limitations at an early stage and to enable short-term solutions to be made, such as supraregional transfers.

摘要

背景

时间序列预测模型在大流行期间指导2019冠状病毒病(COVID-19)重症监护床位容量方面发挥着核心作用。未来重症监护病房(ICU)COVID-19床位占用情况的一个关键预测指标是普通人群中新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染的数量,而这又与周与周之间的变异性、报告延迟、地区差异、未知病例数量、随时间变化的感染率、疫苗接种、SARS-CoV-2病毒变体以及非药物防控措施高度相关。此外,当前以及未来的COVID ICU占用情况还受到ICU出院率和死亡率的显著影响。

方法

德国记录了普通人群中新型SARS-CoV-2感染的数量以及COVID-19重症监护床位占用率。使用常微分方程和多元回归模型的疫情SEIR(易感、暴露、感染、康复)模型对这些数据进行每日统计分析。

结果

为全国各级决策者提供了COVID-19患者ICU占用情况的近期趋势(20天预测)的预测结果。

结论

将预测结果与可用ICU床位容量的发展情况进行比较,以便尽早发现容量限制并能够做出短期解决方案,例如跨地区转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0c9/9992054/0a956afb58b2/63_2022_903_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验