Suppr超能文献

[COVID-19重症监护病房入院的全国暴露模型]

[Nationwide exposure model for COVID-19 intensive care unit admission].

作者信息

Schuppert A, Theisen S, Fränkel P, Weber-Carstens S, Karagiannidis C

机构信息

Institut für Computational Biomedicine, Universitätsklinikum Aachen, RWTH Aachen, Pauwelsstraße 19, 52074, Aachen, Deutschland.

Vorstandsstab Universitätsklinikum Aachen, RWTH Aachen, Aachen, Deutschland.

出版信息

Med Klin Intensivmed Notfmed. 2022 Apr;117(3):218-226. doi: 10.1007/s00063-021-00791-7. Epub 2021 Feb 3.

Abstract

BACKGROUND

Forecasting models for intensive care occupancy of coronavirus disease 2019 (COVID-19) patients are important in the current pandemic for strategic planning of patient allocation and avoidance of regional overcrowding. They are often trained entirely on retrospective infection and occupancy data, which can cause forecast uncertainty to grow exponentially with the forecast horizon.

METHODOLOGY

We propose an alternative modeling approach in which the model is created largely independent of the occupancy data being simulated. The distribution of bed occupancies for patient cohorts is calculated directly from occupancy data from "sentinel clinics". By coupling with infection scenarios, the prediction error is constrained by the error of the infection dynamics scenarios. The model allows systematic simulation of arbitrary infection scenarios, calculation of bed occupancy corridors, and sensitivity analyses with respect to protective measures.

RESULTS

The model was based on hospital data and by adjusting only two parameters of data in the Aachen city region and Germany as a whole. Using the example of the simulation of the respective bed occupancy rates for Germany as a whole, the loading model for the calculation of occupancy corridors is demonstrated. The occupancy corridors form barriers for bed occupancy in the event that infection rates do not exceed specific thresholds. In addition, lockdown scenarios are simulated based on retrospective events.

DISCUSSION

Our model demonstrates that a significant reduction in forecast uncertainty in occupancy forecasts is possible by selectively combining data from different sources. It allows arbitrary combination with infection dynamics models and scenarios, and thus can be used both for load forecasting and for sensitivity analyses for expected novel spreading and lockdown scenarios.

摘要

背景

2019年冠状病毒病(COVID-19)患者重症监护病房占用情况的预测模型,在当前大流行中对于患者分配的战略规划以及避免区域过度拥挤至关重要。这些模型通常完全基于回顾性感染和占用数据进行训练,这可能导致预测不确定性随预测期呈指数增长。

方法

我们提出了一种替代建模方法,其中模型的创建在很大程度上独立于所模拟的占用数据。患者队列的床位占用分布直接根据“哨兵诊所”的占用数据计算得出。通过与感染情况相结合,预测误差受到感染动态情况误差的限制。该模型允许对任意感染情况进行系统模拟、计算床位占用走廊,并对防护措施进行敏感性分析。

结果

该模型基于医院数据,仅通过调整亚琛市地区和整个德国的两个数据参数。以模拟整个德国各自的床位占用率为例,展示了用于计算占用走廊的负荷模型。如果感染率不超过特定阈值,占用走廊会形成床位占用的障碍。此外,基于回顾性事件模拟了封锁情况。

讨论

我们的模型表明,通过有选择地组合不同来源的数据,可以显著降低占用预测中的预测不确定性。它允许与感染动态模型和情况进行任意组合,因此可用于负荷预测以及对预期的新传播和封锁情况进行敏感性分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验