Mughini-Gras Lapo, Benincà Elisa, McDonald Scott A, de Jong Aarieke, Chardon Jurgen, Evers Eric, Bonačić Marinović Axel A
Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
Zoonoses Public Health. 2022 Aug;69(5):475-486. doi: 10.1111/zph.12937. Epub 2022 Mar 10.
Numerous source attribution studies for foodborne pathogens based on epidemiological and microbiological methods are available. These studies provide empirical data for modelling frameworks that synthetize the quantitative evidence at our disposal and reduce reliance on expert elicitations. Here, we develop a statistical model within a Bayesian estimation framework to integrate attribution estimates from expert elicitations with estimates from microbial subtyping and case-control studies for sporadic infections with four major bacterial zoonotic pathogens in the Netherlands (Campylobacter, Salmonella, Shiga toxin-producing E. coli [STEC] O157 and Listeria). For each pathogen, we pooled the published fractions of human cases attributable to each animal reservoir from the microbial subtyping studies, accounting for the uncertainty arising from the different typing methods, attribution models, and year(s) of data collection. We then combined the population attributable fractions (PAFs) from the case-control studies according to five transmission pathways (domestic food, environment, direct animal contact, human-human transmission and travel) and 11 groups within the foodborne pathway (beef/lamb, pork, poultry meat, eggs, dairy, fish/shellfish, fruit/vegetables, beverages, grains, composite foods and food handlers/vermin). The attribution estimates were biologically plausible, allowing the human cases to be attributed in several ways according to reservoirs, transmission pathways and food groups. All pathogens were predominantly foodborne, with Campylobacter being mostly attributable to the chicken reservoir, Salmonella to pigs (albeit closely followed by layers), and Listeria and STEC O157 to cattle. Food-wise, the attributions reflected those at the reservoir level in terms of ranking. We provided a modelling solution to reach consensus attribution estimates reflecting the empirical evidence in the literature that is particularly useful for policy-making and is extensible to other pathogens and domains.
现有许多基于流行病学和微生物学方法对食源性病原体进行来源归因的研究。这些研究为建模框架提供了实证数据,该框架综合了我们所掌握的定量证据,并减少了对专家意见的依赖。在此,我们在贝叶斯估计框架内开发了一个统计模型,以整合专家意见得出的归因估计与微生物分型及病例对照研究对荷兰四种主要细菌性人畜共患病原体(弯曲杆菌、沙门氏菌、产志贺毒素大肠杆菌[STEC]O157和李斯特菌)散发性感染的估计。对于每种病原体,我们汇总了微生物分型研究中归因于每个动物宿主的人类病例的已发表比例,同时考虑了不同分型方法、归因模型和数据收集年份所产生的不确定性。然后,我们根据五种传播途径(家庭食物、环境、直接动物接触、人际传播和旅行)以及食源途径中的11个组(牛肉/羊肉、猪肉、禽肉、蛋类、乳制品、鱼/贝类、水果/蔬菜、饮料、谷物、复合食品以及食品处理人员/害虫),合并了病例对照研究中的人群归因分数(PAF)。归因估计在生物学上是合理的,使得人类病例能够根据宿主、传播途径和食物类别以多种方式进行归因。所有病原体主要通过食物传播,弯曲杆菌主要归因于鸡宿主,沙门氏菌归因于猪(尽管蛋鸡紧随其后),李斯特菌和STEC O157归因于牛。在食物方面,归因在排序上反映了宿主层面的情况。我们提供了一种建模解决方案,以达成反映文献中实证证据的共识归因估计,这对于政策制定特别有用,并且可扩展到其他病原体和领域。