Suppr超能文献

一种基于计算文本挖掘的元分析方法来识别潜在的口干症药物靶点。

A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets.

作者信息

Beckman Micaela F, Brennan Elizabeth J, Igba Chika K, Brennan Michael T, Mougeot Farah B, Mougeot Jean-Luc C

机构信息

Department of Oral Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.

出版信息

J Clin Med. 2022 Mar 5;11(5):1442. doi: 10.3390/jcm11051442.

Abstract

Xerostomia (subjective complaint of dry mouth) is commonly associated with salivary gland hypofunction. Molecular mechanisms associated with xerostomia pathobiology are poorly understood, thus hampering drug development. Our objectives were to (i) use text-mining tools to investigate xerostomia and dry mouth concepts, (ii) identify associated molecular interactions involving genes as candidate drug targets, and (iii) determine how drugs currently used in clinical trials may impact these genes and associated pathways. PubMed and PubMed Central were used to identify search terms associated with xerostomia and/or dry mouth. Search terms were queried in pubmed2ensembl. Protein-protein interaction (PPI) networks were determined using the gene/protein network visualization program search tool for recurring instances of neighboring genes (STRING). A similar program, Cytoscape, was used to determine PPIs of overlapping gene sets. The drug-gene interaction database (DGIdb) and the clinicaltrials.gov database were used to identify potential drug targets from the xerostomia/dry mouth PPI gene set. We identified 64 search terms in common between xerostomia and dry mouth. STRING confirmed PPIs between identified genes (CL = 0.90). Cytoscape analysis determined 58 shared genes, with cytokine-cytokine receptor interaction representing the most significant pathway ( = 1.29 × 10) found in the Kyoto encyclopedia of genes and genomes (KEGG). Fifty-four genes in common had drug interactions, per DGIdb analysis. Eighteen drugs, targeting the xerostomia/dry mouth PPI network, have been evaluated for xerostomia, head and neck cancer oral complications, and Sjögren's Syndrome. The PPI network genes IL6R, EGFR, NFKB1, MPO, and TNFSF13B constitute a possible biomarker signature of xerostomia. Validation of the candidate biomarkers is necessary to better stratify patients at the genetic and molecular levels to facilitate drug development or to monitor response to treatment.

摘要

口干症(主观上感觉口腔干燥)通常与唾液腺功能减退有关。与口干症病理生物学相关的分子机制尚不清楚,这阻碍了药物研发。我们的目标是:(i)使用文本挖掘工具研究口干症和口腔干燥的概念;(ii)识别涉及基因的相关分子相互作用,将其作为候选药物靶点;(iii)确定目前在临床试验中使用的药物如何影响这些基因及相关通路。利用PubMed和PubMed Central来识别与口干症和/或口腔干燥相关的搜索词。在pubmed2ensembl中查询搜索词。使用用于相邻基因重复实例的基因/蛋白质网络可视化程序搜索工具(STRING)来确定蛋白质-蛋白质相互作用(PPI)网络。使用类似的程序Cytoscape来确定重叠基因集的PPI。利用药物-基因相互作用数据库(DGIdb)和clinicaltrials.gov数据库从口干症/口腔干燥PPI基因集中识别潜在的药物靶点。我们确定了口干症和口腔干燥之间共有的64个搜索词。STRING证实了所识别基因之间的PPI(CL = 0.90)。Cytoscape分析确定了58个共享基因,细胞因子-细胞因子受体相互作用是在京都基因与基因组百科全书(KEGG)中发现的最显著通路( = 1.29 × 10)。根据DGIdb分析,共有54个基因存在药物相互作用。针对口干症、头颈癌口腔并发症和干燥综合征,已经评估了18种靶向口干症/口腔干燥PPI网络的药物。PPI网络基因IL6R、EGFR、NFKB1、MPO和TNFSF13B构成了口干症可能的生物标志物特征。有必要对候选生物标志物进行验证,以便在基因和分子水平上更好地对患者进行分层,从而促进药物研发或监测治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/136d/8911392/17a842219a1f/jcm-11-01442-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验