Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Synthetic Polymers: Structure and Properties. Biodegradable Polymers, Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain.
Synthetic Polymers: Structure and Properties. Biodegradable Polymers, Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain.
Int J Pharm. 2023 Sep 25;644:123333. doi: 10.1016/j.ijpharm.2023.123333. Epub 2023 Aug 18.
In order to exploit the pharmacological potential of natural bioactive molecules with low water solubility, such as curcumin, it is necessary to develop formulations, such as amorphous polymer dispersions, which allow a constant release rate and at the same time avoid possible toxicity effects of the crystalline form of the molecule under scrutiny. In this study, polymer dispersions of curcumin were obtained in PADAS, a biodegradable semicrystalline copolymer based on 1,12-dodecanediol, sebacic acid and alanine. The dispersions were fully characterized by means of differential scanning calorimetry and broadband dielectric spectroscopy, and the drug release profile was measured in a simulated body fluid. Amorphous homogeneous binary dispersions were obtained for curcumin mass fraction between 30 and 50%. Curcumin has significantly higher glass transition temperature T (≈ 347 K) than the polymer matrix (≈274-277 K depending on the molecular weight), and dispersions displayed T's intermediate between those of the pure amorphous components, implying that curcumin acts as an effective antiplasticizer for PADAS. Dielectric spectroscopy was employed to assess the relaxation dynamics of the binary dispersion with 30 wt% curcumin, as well as that of each (amorphous) component separately. The binary dispersion was characterized by a single structural relaxation, a single Johari-Goldstein process, and two local intramolecular processes, one for each component. Interestingly, the latter processes scaled with the T of the sample, indicating that they are viscosity-sensitive. In addition, both the pristine polymer and the dispersion exhibited an interfacial Maxwell-Wagner relaxation, likely due to spatial heterogeneities associated with phase disproportionation in this polymer. The release of curcumin from the dispersion in a simulated body fluid followed a Fickian diffusion profile, and 51% of the initial curcumin content was released in 48 h.
为了开发具有低水溶性的天然生物活性分子(如姜黄素)的药理学潜力,需要开发制剂,如无定形聚合物分散体,它可以实现恒定的释放速率,同时避免所研究分子的晶型可能产生的毒性作用。在这项研究中,基于 1,12-十二烷二醇、癸二酸和丙氨酸的可生物降解半结晶共聚物 PADAS 中获得了姜黄素的聚合物分散体。通过差示扫描量热法和宽带介电谱对分散体进行了全面表征,并在模拟体液中测量了药物释放曲线。在姜黄素质量分数为 30-50%的范围内,得到了无定形均匀二元分散体。姜黄素的玻璃化转变温度 T(约 347 K)明显高于聚合物基质(约 274-277 K,取决于分子量),且分散体的 T 介于纯无定形成分之间,表明姜黄素对 PADAS 起到有效的抗塑化剂作用。介电谱用于评估 30 wt%姜黄素的二元分散体以及各(无定形)成分单独的弛豫动力学。二元分散体由单个结构弛豫、单个 Johari-Goldstein 过程和两个局部分子内过程表征,每个成分一个。有趣的是,后两个过程与样品的 T 呈比例关系,表明它们对黏度敏感。此外,原始聚合物和分散体都表现出界面 Maxwell-Wagner 弛豫,这可能是由于该聚合物中与相分离相关的空间不均匀性所致。姜黄素在模拟体液中的释放遵循菲克扩散曲线,48 小时内释放了初始姜黄素含量的 51%。