Suppr超能文献

基于光学成像的深度神经网络的玻璃绝缘子缺失碎片粒度估计

Missing-Sheds Granularity Estimation of Glass Insulators Using Deep Neural Networks Based on Optical Imaging.

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.

Computer Technology Application Key Lab of the Yunnan Province, Kunming 650500, China.

出版信息

Sensors (Basel). 2022 Feb 23;22(5):1737. doi: 10.3390/s22051737.

Abstract

Insulator defect detection is an important task in inspecting overhead transmission lines. However, the surrounding environment is complex, and the detection accuracy of traditional image processing algorithms is low. Therefore, insulator defect detection is still mainly performed manually. In order to improve this situation, we proposed an insulator defect detection method called INSU-YOLO based on deep neural networks. Overexposure points in the image will interfere with insulator detection, so we used image augment to reduce noise and extract the edge information of the insulator. Based on an attention mechanism, we introduced a structure called attention-block where the backbone extracts the feature map, and this aims to improve the ability of our method to detect insulators. Insulators have a variety of specifications, and the location and granularity of defects are also different. Therefore, we proposed an adaptive threat estimation method based on the area ratio between the entire insulator and the defect area. In addition, in order to solve the problem of data shortage, we established a dataset called InsuDetSet for model training. Experiments on the InsuDetSet dataset demonstrated that our model outperforms existing state-of-the-art models regarding both the detection box and speed.

摘要

绝缘子缺陷检测是架空输电线路检测的重要任务。但是,周围环境复杂,传统图像处理算法的检测精度较低。因此,绝缘子缺陷检测仍然主要依靠人工进行。为了改善这种情况,我们提出了一种基于深度学习的绝缘子缺陷检测方法 INSU-YOLO。图像中的过曝光点会干扰绝缘子的检测,因此我们使用图像增强来减少噪声并提取绝缘子的边缘信息。基于注意力机制,我们引入了一种称为 attention-block 的结构,该结构的骨干提取特征图,旨在提高我们的方法检测绝缘子的能力。绝缘子有多种规格,缺陷的位置和粒度也不同。因此,我们提出了一种基于整个绝缘子和缺陷区域面积比的自适应威胁估计方法。此外,为了解决数据短缺的问题,我们建立了一个名为 InsuDetSet 的数据集用于模型训练。在 InsuDetSet 数据集上的实验表明,我们的模型在检测框和速度方面都优于现有的最先进模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7583/8915030/250a4771639a/sensors-22-01737-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验