Suppr超能文献

将 GEDI 与 Landsat 相结合:星载激光雷达和四十年来的光学影像,用于分析意大利的森林干扰和生物量变化。

Integrating GEDI and Landsat: Spaceborne Lidar and Four Decades of Optical Imagery for the Analysis of Forest Disturbances and Biomass Changes in Italy.

机构信息

Department of Agriculture, Food, Environment and Forestry, University of Florence, 50145 Florence, Italy.

Department of Bioscience and Territory, University of Molise, 86100 Campobasso, Italy.

出版信息

Sensors (Basel). 2022 Mar 4;22(5):2015. doi: 10.3390/s22052015.

Abstract

Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests' capacity to absorb carbon. In this context, forest monitoring using all available sources of information is crucial. We combined optical (Landsat) and photonic (GEDI) data to monitor four decades (1985-2019) of disturbances in Italian forests (11 Mha). Landsat data were confirmed as a relevant source of information for forest disturbance mapping, as forest harvestings in Tuscany were predicted with omission errors estimated between 29% (in 2012) and 65% (in 2001). GEDI was assessed using Airborne Laser Scanning (ALS) data available for about 6 Mha of Italian forests. A good correlation (r = 0.75) between Above Ground Biomass Density GEDI estimates (AGBD) and canopy height ALS estimates was reported. GEDI data provided complementary information to Landsat. The Landsat mission is capable of mapping disturbances, but not retrieving the three-dimensional structure of forests, while our results indicate that GEDI is capable of capturing forest biomass changes due to disturbances. GEDI acquires useful information not only for biomass trend quantification in disturbance regimes but also for forest disturbance discrimination and characterization, which is crucial to further understanding the effect of climate change on forest ecosystems.

摘要

森林在应对气候变化方面发挥着重要作用,因为它们吸收了人类碳排放的很大一部分。然而,正是由于气候变化,森林干扰预计会增加,并改变森林吸收碳的能力。在这种情况下,利用所有可用信息来源对森林进行监测至关重要。我们结合了光学(Landsat)和光子(GEDI)数据,监测了意大利森林(1100 万公顷)四十年来(1985-2019 年)的干扰情况。Landsat 数据被证实是森林干扰制图的重要信息来源,因为对托斯卡纳地区森林采伐的预测,漏报误差估计在 29%(2012 年)和 65%(2001 年)之间。GEDI 是利用约 600 万公顷意大利森林的机载激光扫描(ALS)数据进行评估的。报告称,GEDI 估计的地上生物量密度(AGBD)和冠层高度 ALS 估计之间存在良好的相关性(r=0.75)。GEDI 数据提供了 Landsat 的补充信息。Landsat 任务能够对干扰进行制图,但无法获取森林的三维结构,而我们的结果表明,GEDI 能够捕获由于干扰而导致的森林生物量变化。GEDI 不仅可以为干扰状态下的生物量趋势量化提供有用信息,还可以为森林干扰的区分和特征描述提供有用信息,这对于进一步了解气候变化对森林生态系统的影响至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d91c/8914649/1019903ae031/sensors-22-02015-g001.jpg

相似文献

6
Integrated LiDAR-supported valuation of biomass and litter in forest ecosystems. A showcase in Spain.
Sci Total Environ. 2023 Nov 1;897:165364. doi: 10.1016/j.scitotenv.2023.165364. Epub 2023 Jul 9.
7
Mapping the natural disturbance risk to protective forests across the European Alps.
J Environ Manage. 2024 Aug;366:121659. doi: 10.1016/j.jenvman.2024.121659. Epub 2024 Jul 10.
9
The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions.
Earth Space Sci. 2019 Feb;6(2):294-310. doi: 10.1029/2018EA000506. Epub 2019 Feb 27.

引用本文的文献

1
Aboveground biomass density maps for post-hurricane Ian forest monitoring in Florida.
Sci Data. 2025 Jul 10;12(1):1189. doi: 10.1038/s41597-025-05464-0.
2
Forest aboveground biomass estimation based on spaceborne LiDAR combining machine learning model and geostatistical method.
Front Plant Sci. 2024 Dec 11;15:1428268. doi: 10.3389/fpls.2024.1428268. eCollection 2024.
3
Per-Pixel Forest Attribute Mapping and Error Estimation: The Google Earth Engine and R Tool.
Sensors (Basel). 2024 Jun 18;24(12):3947. doi: 10.3390/s24123947.
5
A Sentinel-2 derived dataset of forest disturbances occurred in Italy between 2017 and 2020.
Data Brief. 2022 May 21;42:108297. doi: 10.1016/j.dib.2022.108297. eCollection 2022 Jun.

本文引用的文献

1
Storm and fire disturbances in Europe: Distribution and trends.
Glob Chang Biol. 2021 Aug;27(15):3605-3619. doi: 10.1111/gcb.15679. Epub 2021 May 27.
2
Forest disturbances under climate change.
Nat Clim Chang. 2017 Jun;7:395-402. doi: 10.1038/nclimate3303. Epub 2017 May 31.
3
Forest health and global change.
Science. 2015 Aug 21;349(6250):814-8. doi: 10.1126/science.aac6759.
4
High-resolution global maps of 21st-century forest cover change.
Science. 2013 Nov 15;342(6160):850-3. doi: 10.1126/science.1244693.
5
A large and persistent carbon sink in the world's forests.
Science. 2011 Aug 19;333(6045):988-93. doi: 10.1126/science.1201609. Epub 2011 Jul 14.
6
Managing forests for climate change mitigation.
Science. 2008 Jun 13;320(5882):1456-7. doi: 10.1126/science.1155458.
7
Forests and climate change: forcings, feedbacks, and the climate benefits of forests.
Science. 2008 Jun 13;320(5882):1444-9. doi: 10.1126/science.1155121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验