Suppr超能文献

伊朗南部米拉恩河床中细颗粒沉积物的空间来源的指纹图谱。

Fingerprinting the spatial sources of fine-grained sediment deposited in the bed of the Mehran River, southern Iran.

机构信息

Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, Iran.

Department of Range and Watershed Management, Gonbad Kavous University, Gonbad Kavous, Golestan Province, Iran.

出版信息

Sci Rep. 2022 Mar 10;12(1):3880. doi: 10.1038/s41598-022-07882-1.

Abstract

Accurate information on the sources of suspended sediment in riverine systems is essential to target mitigation. Accordingly, we applied a generalized likelihood uncertainty estimation (GLUE) framework for quantifying contributions from three sub-basin spatial sediment sources in the Mehran River catchment draining into the Persian Gulf, Hormozgan province, southern Iran. A total of 28 sediment samples were collected from the three sub-basin sources and six from the overall outlet. 43 geochemical elements (e.g., major, trace and rare earth elements) were measured in the samples. Four different combinations of statistical tests comprising: (1) traditional range test (TRT), Kruskal-Wallis (KW) H-test and stepwise discriminant function analysis (DFA) (TRT + KW + DFA); (2) traditional range test using mean values (RTM) and two additional tests (RTM + KW + DFA); (3) TRT + KW + PCA (principle component analysis), and; 4) RTM + KW + PCA, were used to the spatial sediment source discrimination. Tracer bi-plots were used as an additional step to assess the tracers selected in the different final composite signatures for source discrimination. The predictions of spatial source contributions generated by GLUE were assessed using statistical tests and virtual sample mixtures. On this basis, TRT + KW + DFA and RTM + KW + DFA yielded the best source discrimination and the tracers in these composite signatures were shown by the biplots to be broadly conservative during transportation from source to sink. Using these final two composite signatures, the estimated mean contributions for the western, central and eastern sub-basins, respectively, ranged between 10-60% (overall mean contribution 36%), 0.3-16% (overall mean contribution 6%) and 38-77% (overall mean contribution 58%). In comparison, the final tracers selected using TRT + KW + PCA generated respective corresponding contributions of 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%) compared with 17-69% (overall mean 41%), 0.2-12% (overall mean 5%) and 29-76% (overall mean 54%) using the final tracers selected by RTM + KW + PCA. Based on the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), GLUE with the final tracers selected using TRT + KW + PCA performed slightly better than GLUE with the final signatures selected by the three other combinations of statistical tests. Based on the virtual mixture tests, however, predictions provided by GLUE with the final tracers selected using TRT + KW + DFA and RTM + KW + DFA (mean MAE = 11% and mean RMSE = 13%) performed marginally better than GLUE with RTM + KW + PCA (mean MAE = 14% and mean RMSE = 16%) and GLUE with TRT + KW + PCA (mean MAE = 17% and mean RMSE = 19%). The estimated source proportions can help watershed engineers plan the targeting of conservation programmes for soil and water resources.

摘要

准确的河流悬浮泥沙来源信息对于目标缓解至关重要。因此,我们应用广义似然不确定性估计(GLUE)框架来量化伊朗南部霍尔木兹甘省流入波斯湾的米尔汗河流域三个子流域空间泥沙源的贡献。从三个子流域源共采集了 28 个泥沙样本,从整个出口采集了 6 个样本。对样品中的 43 种地球化学元素(如主要、痕量和稀土元素)进行了测量。四种不同的统计测试组合包括:(1)传统范围测试(TRT)、克鲁斯卡尔-沃利斯(KW)H 测试和逐步判别函数分析(DFA)(TRT+KW+DFA);(2)使用平均值的传统范围测试(RTM)和另外两个测试(RTM+KW+DFA);(3)TRT+KW+PCA(主成分分析);(4)RTM+KW+PCA,用于空间泥沙源识别。示踪剂双图作为附加步骤,用于评估不同最终综合特征中用于源识别的示踪剂。使用统计测试和虚拟样本混合物评估 GLUE 生成的空间源贡献的预测。在此基础上,TRT+KW+DFA 和 RTM+KW+DFA 产生了最佳的源区分,双图显示这些综合特征中的示踪剂在从源到汇的运输过程中具有广泛的保守性。使用这两个最终的综合特征,西部、中部和东部子流域的估计平均贡献分别在 10-60%(总体平均贡献 36%)、0.3-16%(总体平均贡献 6%)和 38-77%(总体平均贡献 58%)之间。相比之下,使用 TRT+KW+PCA 最终选择的示踪剂分别产生相应的贡献 1-42%(总体平均 20%)、0.5-30%(总体平均 12%)和 55-84%(总体平均 68%),而使用 RTM+KW+PCA 最终选择的示踪剂分别产生 17-69%(总体平均 41%)、0.2-12%(总体平均 5%)和 29-76%(总体平均 54%)。根据平均绝对拟合(MAF;所有目标泥沙样本的 95%以上)和拟合优度(GOF;所有样本的 99%以上),使用 TRT+KW+PCA 最终选择的示踪剂的 GLUE 表现略优于使用其他三种统计测试组合最终选择的示踪剂的 GLUE。然而,根据虚拟混合测试,使用 TRT+KW+DFA 和 RTM+KW+DFA 最终选择的示踪剂的 GLUE(平均 MAE=11%和平均 RMSE=13%)的预测结果略优于使用 RTM+KW+PCA 的 GLUE(平均 MAE=14%和平均 RMSE=16%)和使用 TRT+KW+PCA 的 GLUE(平均 MAE=17%和平均 RMSE=19%)。估计的源比例可以帮助流域工程师规划针对水土资源的保护计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a750/8913788/28d931558f44/41598_2022_7882_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验