Suppr超能文献

功能性代谢组分析可能会改善实施预测、预防和个性化医疗方法理念的结直肠癌管理中的个体治疗效果。

Functional metabolome profiling may improve individual outcomes in colorectal cancer management implementing concepts of predictive, preventive, and personalized medical approach.

作者信息

Yuan Yu, Yang Chenxin, Wang Yingzhi, Sun Mingming, Bi Chenghao, Sun Sitong, Sun Guijiang, Hao Jingpeng, Li Lingling, Shan Changliang, Zhang Shuai, Li Yubo

机构信息

Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China.

School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China.

出版信息

EPMA J. 2022 Jan 27;13(1):39-55. doi: 10.1007/s13167-021-00269-8. eCollection 2022 Mar.

Abstract

OBJECTIVES

Colorectal cancer (CRC) is one of the most common solid tumors worldwide, but its diagnosis and treatment are limited. The objectives of our study were to compare the metabolic differences between CRC patients and healthy controls (HC), and to identify potential biomarkers in the serum that can be used for early diagnosis and as effective therapeutic targets. The aim was to provide a new direction for CRC predictive, preventive, and personalized medicine (PPPM).

METHODS

In this study, CRC patients ( = 30) and HC ( = 30) were recruited. Serum metabolites were assayed using an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technology. Subsequently, CRC cell lines (HCT116 and HCT8) were treated with metabolites to verify their function. Key targets were identified by molecular docking, thermal shift assay, and protein overexpression/inhibition experiments. The inhibitory effect of celastrol on tumor growth was also assessed, which included IC50 analysis, nude mice xenografting, molecular docking, protein overexpression/inhibition experiments, and network pharmacology technology.

RESULTS

In the CRC group, 15 serum metabolites were significantly different in comparison with the HC group. The level of glycodeoxycholic acid (GDCA) was positively correlated with CRC and showed high sensitivity and specificity for the clinical diagnostic reference (AUC = 0.825). In vitro findings showed that GDCA promoted the proliferation and migration of CRC cell lines (HCT116 and HCT8), and Poly(ADP-ribose) polymerase-1 (PARP-1) was identified as one of the key targets of GDCA. The IC50 of celastrol in HCT116 cells was 121.1 nM, and the anticancer effect of celastrol was supported by in vivo experiments. Based on the potential of GDCA in PPPM, PARP-1 was found to be significantly correlated with the anticancer functions of celastrol.

CONCLUSION

These findings suggest that GDCA is an abnormally produced metabolite of CRC, which may provide an innovative molecular biomarker for the predictive identification and targeted prevention of CRC. In addition, PARP-1 was found to be an important target of GDCA that promotes CRC; therefore, celastrol may be a potential targeted therapy for CRC via its effects on PARP-1. Taken together, the pathophysiology and progress of tumor molecules mediated by changes in metabolite content provide a new perspective for predictive, preventive, and personalized medical of clinical cancer patients based on the target of metabolites in vivo.: ChiCTR2000039410.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13167-021-00269-8.

摘要

目的

结直肠癌(CRC)是全球最常见的实体瘤之一,但其诊断和治疗存在局限性。我们研究的目的是比较CRC患者与健康对照(HC)之间的代谢差异,并确定血清中可用于早期诊断和作为有效治疗靶点的潜在生物标志物。目的是为CRC的预测、预防和个性化医学(PPPM)提供新方向。

方法

本研究招募了30例CRC患者和30例HC。使用超高效液相色谱-四极杆飞行时间质谱(UPLC-Q-TOF/MS)技术测定血清代谢物。随后,用代谢物处理CRC细胞系(HCT116和HCT8)以验证其功能。通过分子对接、热位移分析和蛋白质过表达/抑制实验确定关键靶点。还评估了雷公藤红素对肿瘤生长的抑制作用,包括IC50分析、裸鼠异种移植、分子对接、蛋白质过表达/抑制实验和网络药理学技术。

结果

在CRC组中,与HC组相比,有15种血清代谢物存在显著差异。甘氨脱氧胆酸(GDCA)水平与CRC呈正相关,对临床诊断参考具有高敏感性和特异性(AUC = 0.825)。体外研究结果表明,GDCA促进CRC细胞系(HCT116和HCT8)的增殖和迁移,聚(ADP-核糖)聚合酶-1(PARP-1)被确定为GDCA的关键靶点之一。雷公藤红素在HCT116细胞中的IC50为121.1 nM,体内实验支持了雷公藤红素的抗癌作用。基于GDCA在PPPM中的潜力,发现PARP-1与雷公藤红素抗癌功能显著相关。

结论

这些发现表明,GDCA是CRC异常产生的代谢物,可能为CRC的预测性识别和靶向预防提供创新的分子生物标志物。此外,发现PARP-1是促进CRC的GDCA的重要靶点;因此,雷公藤红素可能通过其对PARP-1的作用成为CRC的潜在靶向治疗药物。综上所述,由代谢物含量变化介导的肿瘤分子病理生理学和进展为基于体内代谢物靶点的临床癌症患者的预测、预防和个性化医疗提供了新视角。试验注册号:ChiCTR2000039410。

补充信息

在线版本包含可在10.1007/s13167-021-00269-8获取的补充材料。

相似文献

2
Specificity of metabolic colorectal cancer biomarkers in serum through effect size.
Metabolomics. 2020 Aug 13;16(8):88. doi: 10.1007/s11306-020-01707-w.
4
[UPLC-Q-TOF-MS-based metabolomics study of celastrol].
Zhongguo Zhong Yao Za Zhi. 2019 Aug;44(16):3562-3568. doi: 10.19540/j.cnki.cjcmm.20190606.502.
5
Serum metabolite signatures in normal individuals and patients with colorectal adenoma or colorectal cancer using UPLC-MS/MS method.
J Proteomics. 2023 Jan 6;270:104741. doi: 10.1016/j.jprot.2022.104741. Epub 2022 Sep 26.
6
Correlation Analysis Between Trace Elements and Colorectal Cancer Metabolism by Integrated Serum Proteome and Metabolome.
Front Immunol. 2022 Jun 2;13:921317. doi: 10.3389/fimmu.2022.921317. eCollection 2022.
10
LC-MS based serum metabolomics for identification of hepatocellular carcinoma biomarkers in Egyptian cohort.
J Proteome Res. 2012 Dec 7;11(12):5914-23. doi: 10.1021/pr300673x. Epub 2012 Nov 1.

引用本文的文献

2
Metabolomic biomarkers in liquid biopsy: accurate cancer diagnosis and prognosis monitoring.
Front Oncol. 2024 Feb 7;14:1331215. doi: 10.3389/fonc.2024.1331215. eCollection 2024.
4
Procyanidin C1 inhibits tumor growth and metastasis in colon cancer via modulating miR-501-3p/HIGD1A axis.
J Adv Res. 2024 Jun;60:215-231. doi: 10.1016/j.jare.2023.07.007. Epub 2023 Jul 20.
5
Small molecule metabolites: discovery of biomarkers and therapeutic targets.
Signal Transduct Target Ther. 2023 Mar 20;8(1):132. doi: 10.1038/s41392-023-01399-3.

本文引用的文献

1
[Clinical research progress on disappearing colorectal liver metastases].
Zhonghua Wei Chang Wai Ke Za Zhi. 2021 Nov 25;24(11):1028-1034. doi: 10.3760/cma.j.cn441530-20201210-00657.
2
Overview of omics biomarkers in pituitary neuroendocrine tumors to design future diagnosis and treatment strategies.
EPMA J. 2021 Jun 26;12(3):383-401. doi: 10.1007/s13167-021-00246-1. eCollection 2021 Sep.
3
Screening and prevention of colorectal cancer.
BMJ. 2021 Sep 15;374:n1855. doi: 10.1136/bmj.n1855.
5
Metabolomics, metabolic flux analysis and cancer pharmacology.
Pharmacol Ther. 2021 Aug;224:107827. doi: 10.1016/j.pharmthera.2021.107827. Epub 2021 Mar 1.
6
Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis.
Comput Struct Biotechnol J. 2021 Jan 22;19:949-960. doi: 10.1016/j.csbj.2021.01.009. eCollection 2021.
7
Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder.
Biol Psychiatry. 2021 Mar 1;89(5):451-462. doi: 10.1016/j.biopsych.2020.09.025. Epub 2020 Oct 10.
8
Using metacommunity ecology to understand environmental metabolomes.
Nat Commun. 2020 Dec 11;11(1):6369. doi: 10.1038/s41467-020-19989-y.
9
Metabolic regulation of prostate cancer heterogeneity and plasticity.
Semin Cancer Biol. 2022 Jul;82:94-119. doi: 10.1016/j.semcancer.2020.12.002. Epub 2020 Dec 5.
10
Rising incidence of early-onset colorectal cancer - a call to action.
Nat Rev Clin Oncol. 2021 Apr;18(4):230-243. doi: 10.1038/s41571-020-00445-1. Epub 2020 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验