Suppr超能文献

氧化应激与卒中后神经胶质细胞的相互作用:从机制到治疗。

Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies.

机构信息

Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

出版信息

Front Immunol. 2022 Feb 25;13:852416. doi: 10.3389/fimmu.2022.852416. eCollection 2022.

Abstract

Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.

摘要

中风是全球第二大致死原因,其特点是死亡率和残疾率高。氧化应激伴随着其他病理过程,这些过程共同导致中风后的继发性脑损伤。神经胶质细胞作为大脑的主要组成部分,在正常大脑发育和病理损伤过程中发挥着重要作用。活性氧(ROS)代谢和神经胶质细胞激活的病理生理变化之间存在多种联系。中风后星形胶质细胞和小胶质细胞迅速被激活,产生大量 ROS,通过线粒体和 NADPH 氧化酶途径,导致神经胶质细胞本身和神经元发生氧化损伤。同时,ROS 引起神经胶质细胞形态和功能的改变,并介导其在神经炎症、兴奋毒性和血脑屏障损伤等病理过程中的作用。相反,神经胶质细胞通过合成抗氧化剂和调节核因子 E2 相关因子 2(Nrf2)途径等来保护中枢神经系统(CNS)免受氧化损伤。尽管以前有许多研究集中在神经胶质细胞的免疫功能上,但很少关注神经胶质细胞在氧化应激中的作用。本文讨论了中风后 ROS 产生和氧化抗氧化失衡的不良后果。此外,我们还进一步描述了中风后神经胶质细胞在氧化应激中的生物学作用,并描述了基于神经胶质细胞的潜在治疗工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0002/8913707/0880acd0b848/fimmu-13-852416-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验