Suppr超能文献

基于单型属保护珍稀物种(Tratt.)Seidel叶绿体基因组的比较与系统发育分析

Comparative and Phylogenetic Analysis Based on the Chloroplast Genome of (Tratt.) Seidel, a Protected Rare Species of Monotypic Genus.

作者信息

Ren Jing, Tian Jing, Jiang Hui, Zhu Xin-Xin, Mutie Fredrick Munyao, Wanga Vincent Okelo, Ding Shi-Xiong, Yang Jia-Xin, Dong Xiang, Chen Ling-Ling, Cai Xiu-Zhen, Hu Guang-Wan

机构信息

College of Life Sciences, Hunan Normal University, Changsha, China.

CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.

出版信息

Front Plant Sci. 2022 Feb 24;13:828467. doi: 10.3389/fpls.2022.828467. eCollection 2022.

Abstract

(Tratt.) Seidel (Poaceae) is an ephemeral grass from the monotypic genus Seidl, which grows on wet muddy areas such as fishponds or reservoirs. As a rare species with strict habitat requirements, it is protected at international and national levels. In this study, we sequenced its whole chloroplast genome for the first time using the next-generation sequencing (NGS) technology on the Illumina platform, and performed a comparative and phylogenetic analysis with the related species in Poaceae. The complete chloroplast genome of . is 135,915 bp in length, with a quadripartite structure having two 21,529 bp inverted repeat regions (IRs) dividing the entire circular genome into a large single copy region (LSC) of 80,100 bp and a small single copy region (SSC) of 12,757 bp. The overall GC content is 38.3%, while the GC contents in LSC, SSC, and IR regions are 36.3%, 32.4%, and 43.9%, respectively. A total of 129 genes were annotated in the chloroplast genome, including 83 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. The gene and the introns of both and genes were missing. In addition, the , , , and were pseudogenes. Although the chloroplast genome structure of . was found to be conserved and stable in general, 26 SSRs and 13 highly variable loci were detected, these regions have the potential to be developed as important molecular markers for the subfamily Pooideae. Phylogenetic analysis with species in Poaceae indicated that and were sister groups, and provided new insights into the relationship between , , and . This study presents the initial chloroplast genome report of , which provides an essential data reference for further research on its origin.

摘要

(特拉特。)塞德尔草(禾本科)是塞德尔单型属的一种一年生草本植物,生长在鱼塘或水库等潮湿泥泞的地区。作为一种对栖息地要求严格的珍稀物种,它在国际和国家层面都受到保护。在本研究中,我们首次使用Illumina平台上的下一代测序(NGS)技术对其完整叶绿体基因组进行了测序,并与禾本科相关物种进行了比较和系统发育分析。塞德尔草的完整叶绿体基因组长度为135,915 bp,具有四分体结构,有两个21,529 bp的反向重复区域(IRs),将整个环状基因组分为一个80,100 bp的大单拷贝区域(LSC)和一个12,757 bp的小单拷贝区域(SSC)。总体GC含量为38.3%,而LSC、SSC和IR区域的GC含量分别为36.3%、32.4%和43.9%。叶绿体基因组中共注释了129个基因,包括83个蛋白质编码基因、38个tRNA基因和8个rRNA基因。 基因以及 和 基因的内含子缺失。此外, 、 、 和 是假基因。虽然塞德尔草的叶绿体基因组结构总体上被发现是保守和稳定的,但检测到26个简单序列重复(SSRs)和13个高变位点,这些区域有可能被开发为早熟禾亚科重要的分子标记。与禾本科物种的系统发育分析表明,塞德尔草和 是姐妹群,并为塞德尔草、 和 之间的关系提供了新的见解。本研究展示了塞德尔草的初始叶绿体基因组报告,为其起源的进一步研究提供了重要的数据参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55fd/8908325/471fc5fdb9d6/fpls-13-828467-g001.jpg

相似文献

4
Comparative Analysis of the Chloroplast Genome for Species: Genome Structure and Phylogenetic Relationships.
Front Genet. 2022 May 31;13:878182. doi: 10.3389/fgene.2022.878182. eCollection 2022.
6
Complete Chloroplast Genome Sequences of and : Molecular Structures and Comparative Analysis.
Molecules. 2019 Jan 29;24(3):474. doi: 10.3390/molecules24030474.
8
Comparative Analysis of Chloroplast Genome Structure and Phylogenetic Relationships Among Six Taxa Within the Genus ().
Front Genet. 2022 Mar 16;13:845619. doi: 10.3389/fgene.2022.845619. eCollection 2022.
9
The complete chloroplast genome sequence of monotypic (Melastomataceae), an endemic genus in China.
Mitochondrial DNA B Resour. 2019 Jul 11;4(2):2295-2296. doi: 10.1080/23802359.2019.1627932.
10

引用本文的文献

1
Phylogenomics and plastome evolution of Lithospermeae (Boraginaceae).
BMC Plant Biol. 2024 Oct 14;24(1):957. doi: 10.1186/s12870-024-05665-6.
2
Comparative chloroplast genomes of species: genome evolution and phylogenomic implications.
Front Plant Sci. 2024 Apr 30;15:1349358. doi: 10.3389/fpls.2024.1349358. eCollection 2024.
3
The first complete chloroplast genome of : insights into phylogeny and species identification.
Front Plant Sci. 2024 Apr 29;15:1356912. doi: 10.3389/fpls.2024.1356912. eCollection 2024.
4
Plastome structure, phylogeny and evolution of plastid genes in Reevesia (Helicteroideae, Malvaceae).
J Plant Res. 2024 Jul;137(4):589-604. doi: 10.1007/s10265-024-01547-y. Epub 2024 May 13.
5
Comparative and phylogenetic analyses based on the complete chloroplast genome of subg. (Cornaceae) species.
Front Plant Sci. 2024 Mar 13;15:1306196. doi: 10.3389/fpls.2024.1306196. eCollection 2024.
7
Comparative analysis of chloroplast genome and new insights into phylogenetic relationships of and common adulterants.
Front Plant Sci. 2023 Oct 25;14:1251829. doi: 10.3389/fpls.2023.1251829. eCollection 2023.

本文引用的文献

1
Pseudogenization of the chloroplast threonine (trnT-GGU) gene in the sunflower family (Asteraceae).
Sci Rep. 2021 Oct 26;11(1):21122. doi: 10.1038/s41598-021-00510-4.
2
Complete Chloroplast Genomes of (China) and (Africa) (Velloziaceae): Comparative Genomics and Phylogenomic Placement.
Front Plant Sci. 2021 Jun 14;12:691833. doi: 10.3389/fpls.2021.691833. eCollection 2021.
3
Comparative plastome analysis of , with implications for genome evolution and phylogeny of Asteroideae.
Ecol Evol. 2021 May 6;11(12):7810-7826. doi: 10.1002/ece3.7614. eCollection 2021 Jun.
4
Transcriptome and Comparative Chloroplast Genome Analysis of : Insights Into Molecular Evolution and Phylogenetic Implication.
Front Genet. 2021 Mar 4;12:602528. doi: 10.3389/fgene.2021.602528. eCollection 2021.
5
Mutational Dynamics of Aroid Chloroplast Genomes II.
Front Genet. 2021 Jan 20;11:610838. doi: 10.3389/fgene.2020.610838. eCollection 2020.
6
Less Is More, Natural Loss-of-Function Mutation Is a Strategy for Adaptation.
Plant Commun. 2020 Aug 13;1(6):100103. doi: 10.1016/j.xplc.2020.100103. eCollection 2020 Nov 9.
7
Comparative and Phylogenetic Analysis of the Complete Chloroplast Genomes of Three Section Species (Paeoniaceae).
Front Genet. 2020 Sep 18;11:980. doi: 10.3389/fgene.2020.00980. eCollection 2020.
9
GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes.
Genome Biol. 2020 Sep 10;21(1):241. doi: 10.1186/s13059-020-02154-5.
10
Comparative chloroplast genome analyses of Avena: insights into evolutionary dynamics and phylogeny.
BMC Plant Biol. 2020 Sep 2;20(1):406. doi: 10.1186/s12870-020-02621-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验