Suppr超能文献

基因编辑技术是否应用于发展永续覆盖农业的作物培育?基于合作治理方法的多部门利益相关者评估

Should Gene Editing Be Used to Develop Crops for Continuous-Living-Cover Agriculture? A Multi-Sector Stakeholder Assessment Using a Cooperative Governance Approach.

作者信息

Jordan Nicholas R, Kuzma Jennifer, Ray Deepak K, Foot Kirsten, Snider Madison, Miller Keith, Wilensky-Lanford Ethan, Amarteifio Gifty

机构信息

Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States.

School of Public and International Affairs, Genetic Engineering and Society Center, NC State University, Raleigh, NC, United States.

出版信息

Front Bioeng Biotechnol. 2022 Feb 25;10:843093. doi: 10.3389/fbioe.2022.843093. eCollection 2022.

Abstract

Continuous-living-cover (CLC) agriculture integrates multiple crops to create diversified agroecosystems in which soils are covered by living plants across time and space continuously. CLC agriculture can greatly improve production of many different ecosystem services from agroecosystems, including climate adaptation and mitigation. To go to scale, CLC agriculture requires crops that not only provide continuous living cover but are viable in economic and social terms. At present, lack of such viable crops is strongly limiting the scaling of CLC agriculture. Gene editing (GE) might provide a powerful tool for developing the crops needed to expand CLC agriculture to scale. To assess this possibility, a broad multi-sector deliberative group considered the merits of GE-relative to alternative plant-breeding methods-as means for improving crops for CLC agriculture. The group included many of the sectors whose support is necessary to scaling agricultural innovations, including actors involved in markets, finance, policy, and R&D. In this article, we report findings from interviews and deliberative workshops. Many in the group were enthusiastic about prospects for applications of GE to develop crops for CLC agriculture, relative to alternative plant-breeding options. However, the group noted many issues, risks, and contingencies, all of which are likely to require responsive and adaptive management. Conversely, if these issues, risks, and contingencies cannot be managed, it appears unlikely that a strong multi-sector base of support can be sustained for such applications, limiting their scaling. Emerging methods for responsible innovation and scaling have potential to manage these issues, risks, and contingencies; we propose that outcomes from GE crops for CLC agriculture are likely to be much improved if these emerging methods are used to govern such projects. However, both GE of CLC crops and responsible innovation and scaling are unrefined innovations. Therefore, we suggest that the best pathway for exploring GE of CLC crops is to intentionally couple implementation and refinement of both kinds of innovations. More broadly, we argue that such pilot projects are urgently needed to navigate intensifying grand challenges around food and agriculture, which are likely to create intense pressures to develop genetically-engineered agricultural products and equally intense social conflict.

摘要

持续活体覆盖(CLC)农业整合多种作物,以创建多样化的农业生态系统,在该系统中土壤在时空上持续被活体植物覆盖。CLC农业能够极大地提高农业生态系统中许多不同生态系统服务的产量,包括气候适应和缓解。为了扩大规模,CLC农业需要的作物不仅要提供持续的活体覆盖,而且在经济和社会层面上是可行的。目前,缺乏此类可行作物严重限制了CLC农业的规模化发展。基因编辑(GE)可能为培育将CLC农业扩大规模所需的作物提供一个强大工具。为评估这种可能性,一个广泛的多部门审议小组探讨了与其他植物育种方法相比,基因编辑作为改良用于CLC农业的作物的手段的优点。该小组包括许多扩大农业创新规模所需支持的部门,包括参与市场、金融、政策和研发的各方人员。在本文中,我们报告访谈和审议研讨会的结果。相对于其他植物育种选项,该小组中的许多人对基因编辑用于培育CLC农业作物的应用前景感到兴奋。然而,该小组指出了许多问题、风险和意外情况,所有这些都可能需要灵活应变的管理。相反,如果这些问题、风险和意外情况无法得到管理,那么此类应用似乎不太可能维持强大的多部门支持基础,从而限制其扩大规模。负责任的创新和扩大规模的新兴方法有潜力管理这些问题、风险和意外情况;我们建议,如果使用这些新兴方法来管理此类项目,用于CLC农业的基因编辑作物的成果可能会有很大改善。然而,CLC作物的基因编辑以及负责任的创新和扩大规模都是未经完善的创新。因此,我们建议探索CLC作物基因编辑的最佳途径是有意将这两种创新的实施和完善结合起来。更广泛地说,我们认为迫切需要此类试点项目来应对围绕粮食和农业日益严峻的重大挑战,这些挑战可能会给开发转基因农产品带来巨大压力,同时也引发同样激烈的社会冲突。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eff6/8914063/0d6f180ac2b5/fbioe-10-843093-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验