Suppr超能文献

基于对抗学习的节点-边图注意力网络用于自闭症谱系障碍识别

Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification.

作者信息

Chen Yuzhong, Yan Jiadong, Jiang Mingxin, Zhang Tuo, Zhao Zhongbo, Zhao Weihua, Zheng Jian, Yao Dezhong, Zhang Rong, Kendrick Keith M, Jiang Xi

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7275-7286. doi: 10.1109/TNNLS.2022.3154755. Epub 2024 Jun 3.

Abstract

Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.

摘要

鉴于图神经网络(GNN)具有强大的图嵌入能力,能够基于磁共振成像(MRI)数据来表征脑网络的非欧几里得结构,因此在医学成像领域受到了越来越多的关注。然而,先前的研究在很大程度上以节点为中心,并且在图分类任务中忽略了边特征,导致图分类准确率的表现一般。此外,由于患者之间症状存在相当大的个体差异以及不同站点之间的数据异质性,GNN模型在脑部疾病[例如自闭症谱系障碍(ASD)]识别中的通用性仍远不能令人满意。为了解决上述局限性,本研究提出了一种基于多模态MRI数据的用于ASD识别的新型基于对抗学习的节点 - 边图注意力网络(AL-NEGAT)。首先,基于结构和功能MRI数据对节点和边特征进行建模,以利用互补的脑信息,并通过所提出的NEGAT中的注意力机制将其保存在为个体构建的加权邻接矩阵中。其次,采用两种对抗学习方法来提高NEGAT的通用性。最后,利用基于梯度的显著性图策略进行模型解释,以识别对分类有贡献的重要脑区和连接。基于公开的自闭症脑成像数据交换I(ABIDE I)数据的实验结果表明,所提出的框架在17个不同站点的1007名受试者中,实现了ASD组和典型发育(TD)组之间74.7%的分类准确率,并且优于现有方法,表明所提出的AL-NEGAT模型具有令人满意的分类能力和通用性。我们的工作为脑部疾病识别提供了一个强大的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验