Suppr超能文献

用于小分子的AMOEBA可极化力场参数化的自动化

Automation of AMOEBA polarizable force field parameterization for small molecules.

作者信息

Wu Johnny C, Chattree Gaurav, Ren Pengyu

机构信息

Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA.

出版信息

Theor Chem Acc. 2012 Feb 26;131(3):1138. doi: 10.1007/s00214-012-1138-6.

Abstract

A protocol to generate parameters for the AMOEBA polarizable force field for small organic molecules has been established, and polarizable atomic typing utility, Poltype, which fully automates this process, has been implemented. For validation, we have compared with quantum mechanical calculations of molecular dipole moments, optimized geometry, electrostatic potential, and conformational energy for a variety of neutral and charged organic molecules, as well as dimer interaction energies of a set of amino acid side chain model compounds. Furthermore, parameters obtained in gas phase are substantiated in liquid-phase simulations. The hydration free energy (HFE) of neutral and charged molecules have been calculated and compared with experimental values. The RMS error for the HFE of neutral molecules is less than 1 kcal/mol. Meanwhile, the relative error in the predicted HFE of salts (cations and anions) is less than 3% with a correlation coefficient of 0.95. Overall, the performance of Poltype is satisfactory and provides a convenient utility for applications such as drug discovery. Further improvement can be achieved by the systematic study of various organic compounds, particularly ionic molecules, and refinement and expansion of the parameter database.

摘要

已建立了一种为小分子有机化合物生成AMOEBA可极化力场参数的方案,并实现了可极化原子类型工具Poltype,该工具可使此过程完全自动化。为进行验证,我们已将多种中性和带电有机分子的分子偶极矩、优化几何结构、静电势和构象能的量子力学计算结果,以及一组氨基酸侧链模型化合物的二聚体相互作用能进行了比较。此外,在气相中获得的参数在液相模拟中得到了证实。已计算了中性和带电分子的水合自由能(HFE),并与实验值进行了比较。中性分子HFE的均方根误差小于1 kcal/mol。同时,盐类(阳离子和阴离子)预测HFE的相对误差小于3%,相关系数为0.95。总体而言,Poltype的性能令人满意,为药物发现等应用提供了便利工具。通过对各种有机化合物,特别是离子分子进行系统研究以及完善和扩展参数数据库,可实现进一步改进。

相似文献

1
Automation of AMOEBA polarizable force field parameterization for small molecules.
Theor Chem Acc. 2012 Feb 26;131(3):1138. doi: 10.1007/s00214-012-1138-6.
2
Automation of AMOEBA polarizable force field for small molecules: Poltype 2.
J Comput Chem. 2022 Sep 5;43(23):1530-1542. doi: 10.1002/jcc.26954. Epub 2022 Jul 1.
3
Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules.
J Chem Theory Comput. 2011 Oct 11;7(10):3143-3161. doi: 10.1021/ct200304d.
5
Global Optimization of the Lennard-Jones Parameters for the Drude Polarizable Force Field.
J Chem Theory Comput. 2021 Nov 9;17(11):7085-7095. doi: 10.1021/acs.jctc.1c00664. Epub 2021 Oct 5.
6
The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins.
J Chem Theory Comput. 2013;9(9):4046-4063. doi: 10.1021/ct4003702.
7
Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field.
J Chem Inf Model. 2023 May 8;63(9):2769-2782. doi: 10.1021/acs.jcim.3c00155. Epub 2023 Apr 19.
8
Multipole electrostatics in hydration free energy calculations.
J Comput Chem. 2011 Apr 15;32(5):967-77. doi: 10.1002/jcc.21681. Epub 2010 Oct 5.
9
Development of polarizable models for molecular mechanical calculations. 4. van der Waals parametrization.
J Phys Chem B. 2012 Jun 21;116(24):7088-101. doi: 10.1021/jp3019759. Epub 2012 Jun 6.
10
Prediction of hydration free energies for the SAMPL4 data set with the AMOEBA polarizable force field.
J Comput Aided Mol Des. 2014 Mar;28(3):235-44. doi: 10.1007/s10822-014-9733-3. Epub 2014 Mar 1.

引用本文的文献

2
High-Resolution Molecular-Dynamics Simulations of the Pyruvate Kinase Muscle Isoform 1 and 2 (PKM1/2).
Chemistry. 2025 Apr 4;31(20):e202402534. doi: 10.1002/chem.202402534. Epub 2025 Mar 15.
3
Electric Fields in Polymeric Systems.
Chem Rev. 2024 Dec 11;124(23):13331-13369. doi: 10.1021/acs.chemrev.4c00490. Epub 2024 Nov 25.
7
Crystal Polymorph Search in the Ensemble via a Deposition/Sublimation Alchemical Path.
Cryst Growth Des. 2024 Mar 9;24(8):3205-3217. doi: 10.1021/acs.cgd.3c01358. eCollection 2024 Apr 17.
8
Incorporating Neural Networks into the AMOEBA Polarizable Force Field.
J Phys Chem B. 2024 Mar 14;128(10):2381-2388. doi: 10.1021/acs.jpcb.3c08166. Epub 2024 Mar 6.
10
Limitations of non-polarizable force fields in describing anion binding poses in non-polar synthetic hosts.
Phys Chem Chem Phys. 2023 Jul 5;25(26):17596-17608. doi: 10.1039/d3cp00479a.

本文引用的文献

1
Distributed Multipole Analysis:  Stability for Large Basis Sets.
J Chem Theory Comput. 2005 Nov;1(6):1128-32. doi: 10.1021/ct050190+.
4
Polarization effects in molecular mechanical force fields.
J Phys Condens Matter. 2009 Aug 19;21(33):333102. doi: 10.1088/0953-8984/21/33/333102. Epub 2009 Jul 24.
5
Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes.
J Chem Theory Comput. 2011 Mar 8;7(3):790-797. doi: 10.1021/ct100563b.
6
Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field.
J Chem Theory Comput. 2010 Jul 13;6(7):2059-2070. doi: 10.1021/ct100091j.
7
Multipole electrostatics in hydration free energy calculations.
J Comput Chem. 2011 Apr 15;32(5):967-77. doi: 10.1002/jcc.21681. Epub 2010 Oct 5.
9
Polarizable atomic multipole x-ray refinement: hydration geometry and application to macromolecules.
Biophys J. 2010 Jun 16;98(12):2984-92. doi: 10.1016/j.bpj.2010.02.057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验