Program in Biotechnology, Faculty of Science, Chulalongkorn Universitygrid.7922.e, Bangkok, Thailand.
Research Unit in Bioconversion and Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn Universitygrid.7922.e, Bangkok, Thailand.
Appl Environ Microbiol. 2022 Apr 12;88(7):e0214821. doi: 10.1128/aem.02148-21. Epub 2022 Mar 15.
UV light is a tool associated with the denaturation of cellular components, DNA damage, and cell disruption. UV treatment is widely used in the decontamination process; however, predicting a sufficient UV dose by using traditional methods is doubtful. In this study, an in-house UVC apparatus was designed to investigate the process of the inactivation of five indicator bacteria when the initial cell concentrations and irradiation intensities varied. Both linear and nonlinear mathematical models were applied to predict the inactivation kinetics. In comparison with the Weibull and modified Chick-Watson models, the Chick-Watson model provided a good fit of the experimental data for five bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus faecalis, and Bacillus subtilis. The specific death rate () significantly increased when the irradiation intensity () increased from 1.41 W/m to 3.02 W/m and 4.83 W/m ( < 0.05). Statistical analysis revealed no significant difference in the values among the groups of tested Gram-positive bacteria, Gram-negative bacteria, and B. subtilis spores, but the values differed among groups ( < 0.05). The death rate coefficient () varied from species to species. The values of the tested Gram-positive bacteria were higher than those of the Gram-negative bacteria. The thick peptidoglycan layer in the Gram-positive membrane was responsible for UVC resistance. The high guanine-cytosine (GC) content in bacteria also contributed to UV resistance due to the less photoreactive sites on the nucleotides. This investigation provides a good understanding of bacterial inactivation induced by UVC treatment. Prevention and control measures for microbial pathogens have attracted worldwide attention due to the recent coronavirus disease 2019 pandemic. UV treatments are used as a commercial control to prevent microbial contamination in diverse applications. Microorganisms exhibit different UV sensitivities, which are often measured by the UV doses required for decreasing the number of microbial contaminants in the logarithmic order. The maximum efficacy of UV is usually observed at 254 nm (residing in the UVC range of the light spectrum). UV technology is a nonthermal physical decontamination measure that does not require any chemicals and consumes low levels of energy while leaving insignificant amounts of chemical residues or toxic compounds. Therefore, obtaining the microbial death kinetics and their intrinsic parameters provided in this study together with the UV photoreaction rate enables advancement in the design of UV treatment systems.
紫外光会使细胞成分变性、破坏 DNA 并使细胞破裂,它是一种工具。紫外光处理被广泛应用于消毒过程中;然而,使用传统方法预测足够的紫外剂量是值得怀疑的。在这项研究中,设计了一种内部 UVC 设备,以研究初始细胞浓度和辐照强度变化时五种指示菌的失活动力学过程。应用线性和非线性数学模型来预测失活动力学。与 Weibull 和修正 Chick-Watson 模型相比,Chick-Watson 模型对五种细菌(大肠杆菌、肺炎克雷伯菌、金黄色葡萄球菌、粪肠球菌和枯草芽孢杆菌)的实验数据拟合良好。当辐照强度从 1.41 W/m 增加到 3.02 W/m 和 4.83 W/m 时,比特定死亡率()显著增加(<0.05)。统计学分析表明,测试的革兰氏阳性菌、革兰氏阴性菌和枯草芽孢杆菌孢子组之间的 值没有显著差异,但组间值有显著差异(<0.05)。死亡率系数()因物种而异。测试的革兰氏阳性菌的 值高于革兰氏阴性菌。革兰氏阳性菌膜中的厚肽聚糖层导致对 UVC 的抵抗力。由于核苷酸上的光反应位点较少,细菌中的高鸟嘌呤-胞嘧啶(GC)含量也有助于抵抗紫外线。这项研究提供了对 UVC 处理诱导细菌失活动力学的很好理解。由于最近的 2019 年冠状病毒病疫情,预防和控制微生物病原体的措施引起了全球关注。紫外线处理作为一种商业控制手段,用于防止多种应用中的微生物污染。微生物对紫外线的敏感性不同,通常通过对数减少微生物污染物数量所需的紫外线剂量来衡量。紫外线的最大效果通常在 254nm 处观察到(位于光谱的 UVC 范围内)。紫外线技术是一种非热物理消毒措施,不需要任何化学物质,消耗的能量水平低,同时不会留下大量的化学残留物或有毒化合物。因此,获得本研究中提供的微生物失活动力学及其内在参数以及紫外线光反应速率,有助于设计紫外线处理系统的改进。