Suppr超能文献

基于单试前运动 EEG 的舌运动检测和分类的特征和分类分析。

Feature and Classification Analysis for Detection and Classification of Tongue Movements From Single-Trial Pre-Movement EEG.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:678-687. doi: 10.1109/TNSRE.2022.3157959. Epub 2022 Mar 22.

Abstract

Individuals with severe tetraplegia can benefit from brain-computer interfaces (BCIs). While most movement-related BCI systems focus on right/left hand and/or foot movements, very few studies have considered tongue movements to construct a multiclass BCI. The aim of this study was to decode four movement directions of the tongue (left, right, up, and down) from single-trial pre-movement EEG and provide a feature and classifier investigation. In offline analyses (from ten individuals without a disability) detection and classification were performed using temporal, spectral, entropy, and template features classified using either a linear discriminative analysis, support vector machine, random forest or multilayer perceptron classifiers. Besides the 4-class classification scenario, all possible 3-, and 2-class scenarios were tested to find the most discriminable movement type. The linear discriminant analysis achieved on average, higher classification accuracies for both movement detection and classification. The right- and down tongue movements provided the highest and lowest detection accuracy (95.3±4.3% and 91.7±4.8%), respectively. The 4-class classification achieved an accuracy of 62.6±7.2%, while the best 3-class classification (using left, right, and up movements) and 2-class classification (using left and right movements) achieved an accuracy of 75.6±8.4% and 87.7±8.0%, respectively. Using only a combination of the temporal and template feature groups provided further classification accuracy improvements. Presumably, this is because these feature groups utilize the movement-related cortical potentials, which are noticeably different on the left- versus right brain hemisphere for the different movements. This study shows that the cortical representation of the tongue is useful for extracting control signals for multi-class movement detection BCIs.

摘要

严重四肢瘫痪的个体可以从脑机接口(BCI)中受益。虽然大多数与运动相关的 BCI 系统专注于手和/或脚的左右运动,但很少有研究考虑过使用舌运动来构建多类 BCI。本研究的目的是从单次预运动 EEG 解码舌的四个运动方向(左、右、上和下),并进行特征和分类器研究。在离线分析中(来自十个没有残疾的个体),使用时间、频谱、熵和模板特征进行检测和分类,使用线性判别分析、支持向量机、随机森林或多层感知器分类器进行分类。除了 4 类分类场景外,还测试了所有可能的 3 类和 2 类场景,以找到最具辨别力的运动类型。线性判别分析平均而言,对运动检测和分类都具有更高的分类准确性。右舌和下舌运动分别提供了最高和最低的检测准确性(95.3±4.3%和 91.7±4.8%)。4 类分类的准确率为 62.6±7.2%,而最佳的 3 类分类(使用左、右和上运动)和 2 类分类(使用左和右运动)的准确率分别为 75.6±8.4%和 87.7±8.0%。仅使用时间和模板特征组的组合还提供了进一步的分类准确性提高。大概是因为这些特征组利用了与运动相关的皮质电位,对于不同的运动,左右大脑半球的皮质电位明显不同。本研究表明,舌的皮质表示对于提取多类运动检测 BCI 的控制信号是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验