Suppr超能文献

基于单试环耳 EEG 检测与手部和舌部运动相关的运动相关脑活动。

Detection of Movement-Related Brain Activity Associated with Hand and Tongue Movements from Single-Trial Around-Ear EEG.

机构信息

Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark.

出版信息

Sensors (Basel). 2024 Sep 17;24(18):6004. doi: 10.3390/s24186004.

Abstract

Movement intentions of motor impaired individuals can be detected in laboratory settings via electroencephalography Brain-Computer Interfaces (EEG-BCIs) and used for motor rehabilitation and external system control. The real-world BCI use is limited by the costly, time-consuming, obtrusive, and uncomfortable setup of scalp EEG. Ear-EEG offers a faster, more convenient, and more aesthetic setup for recording EEG, but previous work using expensive amplifiers detected motor intentions at chance level. This study investigates the feasibility of a low-cost ear-EEG BCI for the detection of tongue and hand movements for rehabilitation and control purposes. In this study, ten able-bodied participants performed 100 right wrist extensions and 100 tongue-palate movements while three channels of EEG were recorded around the left ear. Offline movement vs. idle activity classification of ear-EEG was performed using temporal and spectral features classified with Random Forest, Support Vector Machine, K-Nearest Neighbours, and Linear Discriminant Analysis in three scenarios: Hand (rehabilitation purpose), hand (control purpose), and tongue (control purpose). The classification accuracies reached 70%, 73%, and 83%, respectively, which was significantly higher than chance level. These results suggest that a low-cost ear-EEG BCI can detect movement intentions for rehabilitation and control purposes. Future studies should include online BCI use with the intended user group in real-life settings.

摘要

运动障碍个体的运动意图可以通过脑电(EEG)脑机接口(BCI)在实验室环境中进行检测,并用于运动康复和外部系统控制。现实世界中的 BCI 使用受到昂贵、耗时、繁琐和不舒适的头皮 EEG 设置的限制。耳 EEG 为 EEG 记录提供了更快、更方便和更美观的设置,但以前使用昂贵的放大器的工作仅能以机会水平检测运动意图。本研究旨在调查低成本耳 EEG BCI 用于检测舌头和手部运动以进行康复和控制目的的可行性。在这项研究中,十名健康参与者在记录左耳周围的三个通道 EEG 的同时进行了 100 次右手腕伸展和 100 次舌 - 上颚运动。使用随机森林、支持向量机、K-最近邻和线性判别分析对耳 EEG 的运动与空闲活动进行离线分类,分别在三个场景中进行:手部(康复目的)、手部(控制目的)和舌头(控制目的)。分类精度分别达到 70%、73%和 83%,明显高于机会水平。这些结果表明,低成本耳 EEG BCI 可以检测运动意图,用于康复和控制目的。未来的研究应包括在线 BCI 使用,并在现实生活环境中对预期用户群体进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b6/11436153/98299cf23931/sensors-24-06004-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验