School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia.
Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, Victoria, 3083, Australia.
Plant Mol Biol. 2022 May;109(1-2):51-65. doi: 10.1007/s11103-022-01255-y. Epub 2022 Mar 16.
Our Induced Somatic Sector Analysis and protein-protein interaction experiments demonstrate that Eucalyptus grandis IAA13 regulates xylem fibre and vessel development, potentially via EgrIAA13 modules involving ARF2, ARF5, ARF6 and ARF19. Auxin is a crucial phytohormone regulating multiple aspects of plant growth and differentiation, including regulation of vascular cambium activity, xylogenesis and its responsiveness towards gravitropic stress. Although the regulation of these biological processes greatly depends on auxin and regulators of the auxin signalling pathway, many of their specific functions remain unclear. Therefore, the present study aims to functionally characterise Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13), a member of the auxin signalling pathway. In Eucalyptus and Populus, EgrIAA13 and its orthologs are preferentially expressed in the xylogenic tissues and downregulated in tension wood. Therefore, to further investigate EgrIAA13 and its function during xylogenesis, we conducted subcellular localisation and Induced Somatic Sector Analysis experiments using overexpression and RNAi knockdown constructs of EgrIAA13 to create transgenic tissue sectors on growing stems of Eucalyptus and Populus. Since Aux/IAAs interact with Auxin Responsive Factors (ARFs), in silico predictions of IAA13-ARF interactions were explored and experimentally validated via yeast-2-hybrid experiments. Our results demonstrate that EgrIAA13 localises to the nucleus and that downregulation of EgrIAA13 impedes Eucalyptus xylem fibre and vessel development. We also observed that EgrIAA13 interacts with Eucalyptus ARF2, ARF5, ARF6 and ARF19A. Based on these results, we conclude that EgrIAA13 is a regulator of Eucalyptus xylogenesis and postulate that the observed phenotypes are likely to result from alterations in the auxin-responsive transcriptome via IAA13-ARF modules such as EgrIAA13-EgrARF5. Our results provide the first insights into the regulatory role of EgrIAA13 during xylogenesis.
我们的诱导体细胞分析和蛋白质-蛋白质相互作用实验表明,巨桉 IAA13 通过 EgrIAA13 模块(涉及 ARF2、ARF5、ARF6 和 ARF19)调节木质部纤维和导管发育,该模块可能涉及 ARF2、ARF5、ARF6 和 ARF19。生长素是一种关键的植物激素,调节植物生长和分化的多个方面,包括调节维管束形成层的活性、木质部形成及其对向地性应激的反应。尽管这些生物过程的调节在很大程度上依赖于生长素和生长素信号通路的调节剂,但它们的许多特定功能仍不清楚。因此,本研究旨在对桉树 AUX/吲哚-3-乙酸 13(EgrIAA13)进行功能表征,EgrIAA13 是生长素信号通路的成员。在桉树和杨属中,EgrIAA13 及其同源物优先在木质部组织中表达,并在张力木中下调。因此,为了进一步研究 EgrIAA13 及其在木质部形成过程中的功能,我们使用 EgrIAA13 的过表达和 RNAi 敲低构建体进行亚细胞定位和诱导体细胞分析实验,在桉树和杨属的生长茎上创建转基因组织扇区。由于 Aux/IAAs 与生长素响应因子(ARFs)相互作用,因此通过酵母双杂交实验对 IAA13-ARF 相互作用进行了计算机预测和实验验证。我们的结果表明,EgrIAA13 定位于细胞核,下调 EgrIAA13 会阻碍桉树木质部纤维和导管的发育。我们还观察到 EgrIAA13 与桉树 ARF2、ARF5、ARF6 和 ARF19A 相互作用。基于这些结果,我们得出结论,EgrIAA13 是桉树木质部形成的调节剂,并假设观察到的表型可能是由于通过 IAA13-ARF 模块(如 EgrIAA13-EgrARF5)改变生长素反应转录组所致。我们的结果首次提供了 EgrIAA13 在木质部形成过程中调节作用的见解。