Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), 89 Yangdeagiro-gil, Ipjang-myeon, Cheonan-si 31056, Republic of Korea.
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
ChemSusChem. 2022 May 20;15(10):e202200375. doi: 10.1002/cssc.202200375. Epub 2022 Apr 1.
Efficient catalytic ring-opening coupled with hydrogenation is a promising but challenging reaction for producing adipic acid (AA) from 2,5-furan dicarboxylic acid (FDCA). In this study, AA synthesis is carried out in two steps from FDCA via tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) over a recyclable Ru/Al O and an ionic liquid, [MIM(CH ) SO H]I (MIM=methylimidazolium) to deliver 99 % overall yield of AA. Ru/Al O is found to be an efficient catalyst for hydrogenation and hydrogenolysis of FDCA to deliver THFDCA and 2-hydroxyadipic acid (HAA), respectively, where ruthenium is more economically viable than well-known palladium or rhodium hydrogenation catalysts. H chemisorption shows that the alumina phase strongly affects the interaction between Ru nanoparticles (NPs) and supports, resulting in materials with high dispersion and small size of Ru NPs, which in turn are responsible for the high conversion of FDCA. An ionic liquid system, [MIM(CH ) SO H]I is applied to the hydrogenolysis of THFDCA for AA production. The [MIM(CH ) SO H]I exhibits superior activity, enables simple product isolation with high purity, and reduces the severe corrosion problems caused by the conventional hydroiodic acid catalytic system.
从 2,5-呋喃二甲酸(FDCA)合成己二酸(AA)的高效催化开环偶联加氢反应是一种很有前景但极具挑战性的方法。在这项研究中,通过两步法从 FDCA 合成 AA,首先将 FDCA 转化为四氢呋喃-2,5-二甲酸(THFDCA),然后在可回收的 Ru/Al O 和离子液体[MIM(CH ) SO H]I(MIM=甲基咪唑鎓)上进行加氢反应,得到 99%的 AA 总收率。Ru/Al O 被发现是一种高效的催化剂,可分别将 FDCA 加氢和氢解为 THFDCA 和 2-羟基己二酸(HAA),其中钌比知名的钯或铑加氢催化剂更经济可行。H 化学吸附表明,氧化铝相强烈影响 Ru 纳米颗粒(NPs)与载体之间的相互作用,从而使材料具有高分散性和较小的 Ru NPs 尺寸,这反过来又导致 FDCA 的高转化率。离子液体体系[MIM(CH ) SO H]I 被应用于 THFDCA 的氢解反应以生产 AA。[MIM(CH ) SO H]I 表现出优异的活性,可实现高纯度的产物简单分离,并减少了传统氢碘酸催化体系引起的严重腐蚀问题。