Suppr超能文献

使用风格生成对抗网络自适应鉴别器增强技术的高分辨率膝关节X线平片图像合成

High-resolution knee plain radiography image synthesis using style generative adversarial network adaptive discriminator augmentation.

作者信息

Ahn Gun, Choi Byung Sun, Ko Sunho, Jo Changwung, Han Hyuk-Soo, Lee Myung Chul, Ro Du Hyun

机构信息

Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Korea.

Department of Orthopedic Surgery, Seoul National University Hospital, Jongno-gu, Korea.

出版信息

J Orthop Res. 2023 Jan;41(1):84-93. doi: 10.1002/jor.25325. Epub 2022 Oct 5.

Abstract

In this retrospective study, 10,000 anteroposterior (AP) radiography of the knee from a single institution was used to create medical data set that are more balanced and cheaper to create. Two types of convolutional networks were used, deep convolutional GAN (DCGAN) and Style GAN Adaptive Discriminator Augmentation (StyleGAN2-ADA). To verify the quality of generated images from StyleGAN2-ADA compared to real ones, the Visual Turing test was conducted by two computer vision experts, two orthopedic surgeons, and a musculoskeletal radiologist. For quantitative analysis, the Fréchet inception distance (FID), and principal component analysis (PCA) were used. Generated images reproduced the features of osteophytes, joint space narrowing, and sclerosis. Classification accuracy of the experts was 34%, 43%, 44%, 57%, and 50%. FID between the generated images and real ones was 2.96, which is significantly smaller than another medical data set (BreCaHAD = 15.1). PCA showed that no significant difference existed between the PCs of the real and generated images (p > 0.05). At least 2000 images were required to make reliable images optimally. By performing PCA in latent space, we were able to control the desired PC that show a progression of arthritis. Using a GAN, we were able to generate knee X-ray images that accurately reflected the characteristics of the arthritis progression stage, which neither human experts nor artificial intelligence could discern apart from the real images. In summary, our research opens up the potential to adopt a generative model to synthesize realistic anonymous images that can also solve data scarcity and class inequalities.

摘要

在这项回顾性研究中,来自单一机构的10000张膝关节前后位(AP)X线片被用于创建更均衡且成本更低的医学数据集。使用了两种类型的卷积网络,即深度卷积生成对抗网络(DCGAN)和风格生成对抗网络自适应判别器增强(StyleGAN2 - ADA)。为了验证与真实图像相比StyleGAN2 - ADA生成图像的质量,由两位计算机视觉专家、两位骨科医生和一位肌肉骨骼放射科医生进行了视觉图灵测试。对于定量分析,使用了弗雷歇初始距离(FID)和主成分分析(PCA)。生成的图像再现了骨赘、关节间隙变窄和硬化的特征。专家的分类准确率分别为34%、43%、44%、57%和50%。生成图像与真实图像之间的FID为2.96,显著小于另一个医学数据集(BreCaHAD = 15.1)。PCA表明真实图像和生成图像的主成分之间不存在显著差异(p > 0.05)。至少需要2000张图像才能最佳地生成可靠图像。通过在潜在空间中进行PCA,我们能够控制显示关节炎进展的所需主成分。使用生成对抗网络,我们能够生成准确反映关节炎进展阶段特征的膝关节X线图像,除了真实图像外,人类专家和人工智能都无法区分这些图像。总之,我们的研究开辟了采用生成模型来合成现实匿名图像的潜力,这也可以解决数据稀缺和类别不平等问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验