Zia Rabbia, Rehman Mariam, Hussain Afzaal, Nazeer Shahbaz, Anjum Maria
Department of Information Technology, Government College University Faisalabad, Punjab, Pakistan.
Department of Computer Science, Lahore College for Women University, Lahore, Punjab, Pakistan.
PeerJ Comput Sci. 2024 Sep 20;10:e2181. doi: 10.7717/peerj-cs.2181. eCollection 2024.
Synthetic images ar---e created using computer graphics modeling and artificial intelligence techniques, referred to as deepfakes. They modify human features by using generative models and deep learning algorithms, posing risks violations of social media regulations and spread false information. To address these concerns, the study proposed an improved generative adversarial network (GAN) model which improves accuracy while differentiating between real and fake images focusing on data augmentation and label smoothing strategies for GAN training. The study utilizes a dataset containing human faces and employs DCGAN (deep convolutional generative adversarial network) as the base model. In comparison with the traditional GANs, the proposed GAN outperform in terms of frequently used metrics ., Fréchet Inception Distance (FID) and accuracy. The model effectiveness is demonstrated through evaluation on the Flickr-Faces Nvidia dataset and Fakefaces d--ataset, achieving an FID score of 55.67, an accuracy of 98.82%, and an F1-score of 0.99 in detection. This study optimizes the model parameters to achieve optimal parameter settings. This study fine-tune the model parameters to reach optimal settings, thereby reducing risks in synthetic image generation. The article introduces an effective framework for both image manipulation and detection.
合成图像是使用计算机图形建模和人工智能技术创建的,被称为深度伪造。它们通过使用生成模型和深度学习算法来修改人类特征,存在违反社交媒体规定和传播虚假信息的风险。为了解决这些问题,该研究提出了一种改进的生成对抗网络(GAN)模型,该模型在区分真实图像和虚假图像时提高了准确性,重点是GAN训练的数据增强和标签平滑策略。该研究使用了一个包含人脸的数据集,并采用深度卷积生成对抗网络(DCGAN)作为基础模型。与传统的GAN相比,所提出的GAN在常用指标,即弗雷歇因距离(FID)和准确率方面表现更优。通过在Flickr-Faces Nvidia数据集和Fakefaces数据集上进行评估,证明了该模型的有效性,在检测中实现了55.67的FID分数、98.82%的准确率和0.99的F1分数。这项研究优化了模型参数以实现最佳参数设置。该研究对模型参数进行微调以达到最佳设置,从而降低合成图像生成中的风险。本文介绍了一个用于图像操纵和检测的有效框架。