Tri-Institutional MD-PhD Program, New York, New York 10065, United States.
Tri-Institutional PhD Program in Chemical Biology, New York, New York 10065, United States.
ACS Chem Biol. 2022 Apr 15;17(4):756-761. doi: 10.1021/acschembio.1c00864. Epub 2022 Mar 16.
Because of their long half-lives and highly nucleophilic tails, histones are particularly susceptible to accumulating nonenzymatic covalent modifications, such as glycation. The resulting modifications can have profound effects on cellular physiology due to the regulatory role histones play in all DNA-templated processes; however, the complexity of Maillard chemistry on proteins makes tracking and enriching for glycated proteins a challenging task. Here, we characterize glyoxal (GO) modifications on histones using quantitative proteomics and an aniline-derived GO-reactive probe. In addition, we leverage this chemistry to demonstrate that the glycation regulatory proteins DJ-1 and GLO1 reduce levels of histone GO adducts. Finally, we employ a two-round pull-down method to enrich histone H3 GO glycation and map these adducts to specific chromatin regions.
由于其半衰期长且亲核性尾部高,组蛋白特别容易积累非酶促的共价修饰,如糖化。由于组蛋白在所有 DNA 模板过程中发挥的调节作用,这些修饰会对细胞生理学产生深远的影响;然而,蛋白质上的美拉德化学的复杂性使得跟踪和富集糖化蛋白成为一项具有挑战性的任务。在这里,我们使用定量蛋白质组学和一种苯胺衍生的 GO 反应探针来描述组蛋白上的乙二醛(GO)修饰。此外,我们利用这种化学方法来证明糖化调节蛋白 DJ-1 和 GLO1 降低了组蛋白 GO 加合物的水平。最后,我们采用两轮下拉法富集组蛋白 H3 GO 糖化,并将这些加合物映射到特定的染色质区域。