Suppr超能文献

步态质量感知网络:实现基于轮廓的步态识别的可解释性。

Gait Quality Aware Network: Toward the Interpretability of Silhouette-Based Gait Recognition.

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8978-8988. doi: 10.1109/TNNLS.2022.3154723. Epub 2023 Oct 27.

Abstract

Gait recognition receives increasing attention since it can be conducted at a long distance in a nonintrusive way and applied to the condition of changing clothes. Most existing methods take the silhouettes of gait sequences as the input and learn a unified representation from multiple silhouettes to match probe and gallery. However, these models are all faced with the lack of interpretability, e.g., it is not clear which silhouette in a gait sequence and which part in the human body are relatively more important for recognition. In this work, we propose a gait quality aware network (GQAN) for gait recognition which explicitly assesses the quality of each silhouette and each part via two blocks: frame quality block (FQBlock) and part quality block (PQBlock). Specifically, FQBlock works in a squeeze-and-excitation style to recalibrate the features for each silhouette, and the scores of all the channels are added as frame quality indicator. PQBlock predicts a score for each part which is used to compute the weighted distance between the probe and gallery. Particularly, we propose a part quality loss (PQLoss) which enables GQAN to be trained in an end-to-end manner with only sequence-level identity annotations. This work is meaningful by moving toward the interpretability of silhouette-based gait recognition, and our method also achieves very competitive performance on CASIA-B and OUMVLP.

摘要

步态识别受到越来越多的关注,因为它可以在非侵入的方式下进行长距离识别,并应用于换衣的情况下。大多数现有的方法都将步态序列的轮廓作为输入,并从多个轮廓中学习统一的表示来匹配探针和图库。然而,这些模型都面临着缺乏可解释性的问题,例如,不清楚步态序列中的哪个轮廓和人体的哪个部位对识别更为重要。在这项工作中,我们提出了一种用于步态识别的步态质量感知网络(GQAN),该网络通过两个模块来显式地评估每个轮廓和每个部分的质量:帧质量模块(FQBlock)和部分质量模块(PQBlock)。具体来说,FQBlock 以挤压和激励的方式工作,重新校准每个轮廓的特征,所有通道的得分相加作为帧质量指标。PQBlock 为每个部分预测一个得分,用于计算探针和图库之间的加权距离。特别地,我们提出了一种部分质量损失(PQLoss),使 GQAN 能够仅使用序列级别的身份注释进行端到端训练。通过朝着基于轮廓的步态识别的可解释性方向发展,我们的方法在 CASIA-B 和 OUMVLP 上也取得了非常有竞争力的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验