Department of Biomedical Engineering, Yale University, 55 Prospect St, New Haven, CT 06511, United States.
Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06520, United States.
Cereb Cortex. 2024 May 2;34(5). doi: 10.1093/cercor/bhae200.
Brain energy budgets specify metabolic costs emerging from underlying mechanisms of cellular and synaptic activities. While current bottom-up energy budgets use prototypical values of cellular density and synaptic density, predicting metabolism from a person's individualized neuropil density would be ideal. We hypothesize that in vivo neuropil density can be derived from magnetic resonance imaging (MRI) data, consisting of longitudinal relaxation (T1) MRI for gray/white matter distinction and diffusion MRI for tissue cellularity (apparent diffusion coefficient, ADC) and axon directionality (fractional anisotropy, FA). We present a machine learning algorithm that predicts neuropil density from in vivo MRI scans, where ex vivo Merker staining and in vivo synaptic vesicle glycoprotein 2A Positron Emission Tomography (SV2A-PET) images were reference standards for cellular and synaptic density, respectively. We used Gaussian-smoothed T1/ADC/FA data from 10 healthy subjects to train an artificial neural network, subsequently used to predict cellular and synaptic density for 54 test subjects. While excellent histogram overlaps were observed both for synaptic density (0.93) and cellular density (0.85) maps across all subjects, the lower spatial correlations both for synaptic density (0.89) and cellular density (0.58) maps are suggestive of individualized predictions. This proof-of-concept artificial neural network may pave the way for individualized energy atlas prediction, enabling microscopic interpretations of functional neuroimaging data.
脑能量预算指定了源自细胞和突触活动的潜在机制的代谢成本。虽然当前的自下而上的能量预算使用细胞密度和突触密度的典型值,但从个体的神经突密度预测代谢是理想的。我们假设,体内神经突密度可以从磁共振成像(MRI)数据中得出,这些数据包括用于区分灰质/白质的纵向弛豫(T1)MRI 和用于组织细胞密度(表观扩散系数,ADC)和轴突方向性(各向异性分数,FA)的扩散 MRI。我们提出了一种机器学习算法,该算法可以根据体内 MRI 扫描预测神经突密度,其中体外 Merker 染色和体内突触小泡糖蛋白 2A 正电子发射断层扫描(SV2A-PET)图像分别是细胞和突触密度的参考标准。我们使用来自 10 名健康受试者的高斯平滑 T1/ADC/FA 数据来训练人工神经网络,然后将其用于预测 54 名测试受试者的细胞和突触密度。虽然在所有受试者中都观察到了突触密度(0.93)和细胞密度(0.85)图的极好的直方图重叠,但突触密度(0.89)和细胞密度(0.58)图的较低空间相关性表明了个体预测。这个概念验证的人工神经网络可能为个性化能量图谱预测铺平道路,使功能神经影像学数据的微观解释成为可能。