Suppr超能文献

人类动作-结果学习的神经基础。

The Neural Bases of Action-Outcome Learning in Humans.

机构信息

Centre for Translational Data Science, University of Sydney, Sydney, NSW 2006, Australia.

Data61, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW 2015, Australia.

出版信息

J Neurosci. 2022 Apr 27;42(17):3636-3647. doi: 10.1523/JNEUROSCI.1079-21.2022. Epub 2022 Mar 16.

Abstract

From an associative perspective the acquisition of new goal-directed actions requires the encoding of specific action-outcome (AO) associations and, therefore, sensitivity to the validity of an action as a predictor of a specific outcome relative to other events. Although competitive architectures have been proposed within associative learning theory to achieve this kind of identity-based selection, whether and how these architectures are implemented by the brain is still a matter of conjecture. To investigate this issue, we trained human participants to encode various AO associations while undergoing functional neuroimaging (fMRI). We then degraded one AO contingency by increasing the probability of the outcome in the absence of its associated action while keeping other AO contingencies intact. We found that this treatment selectively reduced performance of the degraded action. Furthermore, when a signal predicted the unpaired outcome, performance of the action was restored, suggesting that the degradation effect reflects competition between the action and the context for prediction of the specific outcome. We used a Kalman filter to model the contribution of different causal variables to AO learning and found that activity in the medial prefrontal cortex (mPFC) and the dorsal anterior cingulate cortex (dACC) tracked changes in the association of the action and context, respectively, with regard to the specific outcome. Furthermore, we found the mPFC participated in a network with the striatum and posterior parietal cortex to segregate the influence of the various competing predictors to establish specific AO associations. Humans and other animals learn the consequences of their actions, allowing them to control their environment in a goal-directed manner. Nevertheless, it is unknown how we parse environmental causes from the effects of our own actions to establish these specific action-outcome (AO) relationships. Here, we show that the brain learns the causal structure of the environment by segregating the unique influence of actions from other causes in the medial prefrontal and anterior cingulate cortices and, through a network of structures, including the caudate nucleus and posterior parietal cortex, establishes the distinct causal relationships from which specific AO associations are formed.

摘要

从联想的角度来看,新的目标导向动作的获取需要对特定的动作-结果 (AO) 关联进行编码,因此,需要对动作作为特定结果的预测相对于其他事件的有效性敏感。尽管在联想学习理论中已经提出了竞争架构来实现这种基于身份的选择,但这些架构是否以及如何被大脑实现仍然是一个推测的问题。为了研究这个问题,我们在进行功能神经影像学 (fMRI) 的同时,训练人类参与者来编码各种 AO 关联。然后,我们通过增加在没有相关动作的情况下结果出现的概率来降低一个 AO 关联的有效性,同时保持其他 AO 关联不变。我们发现这种处理选择性地降低了降级动作的性能。此外,当一个信号预测了未配对的结果时,动作的表现得到了恢复,这表明这种降级效应反映了动作和上下文之间对特定结果的预测之间的竞争。我们使用卡尔曼滤波器来模拟不同因果变量对 AO 学习的贡献,发现前额内侧皮质 (mPFC) 和背侧前扣带皮质 (dACC) 的活动分别跟踪了动作和上下文与特定结果的关联变化。此外,我们发现 mPFC 与纹状体和后顶叶皮层一起参与了一个网络,以分离各种竞争预测因素的影响,从而建立特定的 AO 关联。人类和其他动物学习他们行为的后果,使他们能够以目标导向的方式控制自己的环境。然而,我们不知道如何将环境的原因与自己行为的影响区分开来,以建立这些特定的动作-结果 (AO) 关系。在这里,我们表明大脑通过在前额内侧和前扣带皮质中分离动作的独特影响和其他原因,以及通过包括尾状核和后顶叶皮层在内的结构网络,来学习环境的因果结构,从而建立从特定 AO 关联形成的独特因果关系。

相似文献

1
The Neural Bases of Action-Outcome Learning in Humans.
J Neurosci. 2022 Apr 27;42(17):3636-3647. doi: 10.1523/JNEUROSCI.1079-21.2022. Epub 2022 Mar 16.
2
Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset.
Cereb Cortex. 2016 Jul;26(7):3273-84. doi: 10.1093/cercor/bhw067. Epub 2016 Apr 29.
3
Neural Computations Underlying Causal Structure Learning.
J Neurosci. 2018 Aug 8;38(32):7143-7157. doi: 10.1523/JNEUROSCI.3336-17.2018. Epub 2018 Jun 29.
4
[Structural and functional neuroanatomy of attention-deficit hyperactivity disorder (ADHD)].
Encephale. 2009 Apr;35(2):107-14. doi: 10.1016/j.encep.2008.01.005. Epub 2008 Jul 7.
6
Thinking about intentions.
Neuroimage. 2005 Dec;28(4):787-96. doi: 10.1016/j.neuroimage.2005.05.001. Epub 2005 Jun 17.
8
Causal Inference Gates Corticostriatal Learning.
J Neurosci. 2021 Aug 11;41(32):6892-6904. doi: 10.1523/JNEUROSCI.2796-20.2021. Epub 2021 Jul 9.
9
Distinct Regions within Medial Prefrontal Cortex Process Pain and Cognition.
J Neurosci. 2016 Dec 7;36(49):12385-12392. doi: 10.1523/JNEUROSCI.2180-16.2016. Epub 2016 Nov 2.

引用本文的文献

2
Contingency learning of social cues: neural engagement and emotional modulation by facial expressions.
Front Hum Neurosci. 2025 Feb 21;19:1527081. doi: 10.3389/fnhum.2025.1527081. eCollection 2025.
3
Emergent Aspects of the Integration of Sensory and Motor Functions.
Brain Sci. 2025 Feb 7;15(2):162. doi: 10.3390/brainsci15020162.
5
The successor representation subserves hierarchical abstraction for goal-directed behavior.
PLoS Comput Biol. 2024 Feb 20;20(2):e1011312. doi: 10.1371/journal.pcbi.1011312. eCollection 2024 Feb.
6
Transcranial direct-current stimulation enhances Pavlovian tendencies during intermittent loss of control.
Front Psychiatry. 2023 May 9;14:1164208. doi: 10.3389/fpsyt.2023.1164208. eCollection 2023.
7
Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala.
Brain Struct Funct. 2023 Jun;228(5):1201-1257. doi: 10.1007/s00429-023-02644-9. Epub 2023 May 13.
8
Topographic organization of the human caudate functional connectivity and age-related changes with resting-state fMRI.
Front Syst Neurosci. 2022 Sep 23;16:966433. doi: 10.3389/fnsys.2022.966433. eCollection 2022.
9
Elevated prefrontal dopamine interferes with the stress-buffering properties of behavioral control in female rats.
Neuropsychopharmacology. 2023 Feb;48(3):498-507. doi: 10.1038/s41386-022-01443-w. Epub 2022 Sep 8.

本文引用的文献

1
Response-independent outcome presentations weaken the instrumental response-outcome association.
J Exp Psychol Anim Learn Cogn. 2022 Oct;48(4):396-412. doi: 10.1037/xan0000340.
2
A theory of actions and habits: The interaction of rate correlation and contiguity systems in free-operant behavior.
Psychol Rev. 2020 Nov;127(6):945-971. doi: 10.1037/rev0000201. Epub 2020 May 14.
3
The Meaning of Behavior: Discriminating Reflex and Volition in the Brain.
Neuron. 2019 Oct 9;104(1):47-62. doi: 10.1016/j.neuron.2019.09.024.
4
Believing in dopamine.
Nat Rev Neurosci. 2019 Nov;20(11):703-714. doi: 10.1038/s41583-019-0220-7. Epub 2019 Sep 30.
5
Impaired awareness of action-outcome contingency and causality during healthy ageing and following ventromedial prefrontal cortex lesions.
Neuropsychologia. 2019 May;128:282-289. doi: 10.1016/j.neuropsychologia.2018.01.021. Epub 2018 Feb 2.
6
The Role of the Anterior Cingulate Cortex in Prediction Error and Signaling Surprise.
Top Cogn Sci. 2019 Jan;11(1):119-135. doi: 10.1111/tops.12307. Epub 2017 Nov 13.
8
What the success of brain imaging implies about the neural code.
Elife. 2017 Jan 19;6:e21397. doi: 10.7554/eLife.21397.
9
Learning, Reward, and Decision Making.
Annu Rev Psychol. 2017 Jan 3;68:73-100. doi: 10.1146/annurev-psych-010416-044216. Epub 2016 Sep 28.
10
Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):200-5. doi: 10.1073/pnas.1513619112. Epub 2015 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验