Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
Mol Psychiatry. 2022 Jun;27(6):2849-2857. doi: 10.1038/s41380-022-01507-9. Epub 2022 Mar 16.
Genome-wide association studies (GWASs) have identified numerous risk genes for depression. Nevertheless, genes crucial for understanding the molecular mechanisms of depression and effective antidepressant drug targets are largely unknown. Addressing this, we aimed to highlight potentially causal genes by systematically integrating the brain and blood protein and expression quantitative trait loci (QTL) data with a depression GWAS dataset via a statistical framework including Mendelian randomization (MR), Bayesian colocalization, and Steiger filtering analysis. In summary, we identified three candidate genes (TMEM106B, RAB27B, and GMPPB) based on brain data and two genes (TMEM106B and NEGR1) based on blood data with consistent robust evidence at both the protein and transcriptional levels. Furthermore, the protein-protein interaction (PPI) network provided new insights into the interaction between brain and blood in depression. Collectively, four genes (TMEM106B, RAB27B, GMPPB, and NEGR1) affect depression by influencing protein and gene expression level, which could guide future researches on candidate genes investigations in animal studies as well as prioritize antidepressant drug targets.
全基因组关联研究(GWAS)已经确定了许多与抑郁症相关的风险基因。然而,对于理解抑郁症的分子机制以及有效的抗抑郁药物靶点至关重要的基因在很大程度上仍是未知的。为了解决这个问题,我们旨在通过一个统计框架,包括孟德尔随机化(MR)、贝叶斯共定位和 Steiger 过滤分析,系统地整合大脑和血液蛋白质和表达数量性状基因座(QTL)数据与抑郁症 GWAS 数据集,以突出潜在的因果基因。总的来说,我们基于大脑数据确定了三个候选基因(TMEM106B、RAB27B 和 GMPPB),基于血液数据确定了两个候选基因(TMEM106B 和 NEGR1),这些候选基因在蛋白质和转录水平上都有一致的稳健证据。此外,蛋白质-蛋白质相互作用(PPI)网络为抑郁症中大脑和血液之间的相互作用提供了新的见解。总的来说,四个基因(TMEM106B、RAB27B、GMPPB 和 NEGR1)通过影响蛋白质和基因表达水平来影响抑郁症,这可以指导未来在动物研究中对候选基因进行研究,并优先考虑抗抑郁药物靶点。