Suppr超能文献

运用扩展的接受模型统一理论预测肥胖患者对电子心理健康干预措施的接受度:横断面研究

Predicting Acceptance of e-Mental Health Interventions in Patients With Obesity by Using an Extended Unified Theory of Acceptance Model: Cross-sectional Study.

作者信息

Rentrop Vanessa, Damerau Mirjam, Schweda Adam, Steinbach Jasmin, Schüren Lynik Chantal, Niedergethmann Marco, Skoda Eva-Maria, Teufel Martin, Bäuerle Alexander

机构信息

Clinic for Psychosomatic Medicine and Psychotherapy, LVR-University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

Department of General and Visceral Surgery, Alfried-Krupp Hospital Essen, Essen, Germany.

出版信息

JMIR Form Res. 2022 Mar 17;6(3):e31229. doi: 10.2196/31229.

Abstract

BACKGROUND

The rapid increase in the number of people who are overweight and obese is a worldwide health problem. Obesity is often associated with physiological and mental health burdens. Owing to several barriers to face-to-face psychotherapy, a promising approach is to exploit recent developments and implement innovative e-mental health interventions that offer various benefits to patients with obesity and to the health care system.

OBJECTIVE

This study aims to assess the acceptance of e-mental health interventions in patients with obesity and explore its influencing predictors. In addition, the well-established Unified Theory of Acceptance and Use of Technology (UTAUT) model is compared with an extended UTAUT model in terms of variance explanation of acceptance.

METHODS

A cross-sectional web-based survey study was conducted from July 2020 to January 2021 in Germany. Eligibility requirements were adult age (≥18 years), internet access, good command of the German language, and BMI >30 kg/m (obesity). A total of 448 patients with obesity (grades I, II, and III) were recruited via specialized social media platforms. The impact of various sociodemographic, medical, and mental health characteristics was assessed. eHealth-related data and acceptance of e-mental health interventions were examined using a modified questionnaire based on the UTAUT.

RESULTS

Overall, the acceptance of e-mental health interventions in patients with obesity was moderate (mean 3.18, SD 1.11). Significant differences in the acceptance of e-mental health interventions among patients with obesity exist, depending on the grade of obesity, age, sex, occupational status, and mental health status. In an extended UTAUT regression model, acceptance was significantly predicted by the depression score (Patient Health Questionnaire-8; β=.07; P=.03), stress owing to constant availability via mobile phone or email (β=.06; P=.02), and confidence in using digital media (β=-0.058; P=.04) and by the UTAUT core predictors performance expectancy (β=.45; P<.001), effort expectancy (β=.22; P<.001), and social influence (β=.27; P<.001). The comparison between an extended UTAUT model (16 predictors) and the restrictive UTAUT model (performance expectancy, effort expectancy, and social influence) revealed a significant difference in explained variance (F=2.366; P=.005).

CONCLUSIONS

The UTAUT model has proven to be a valuable instrument to predict the acceptance of e-mental health interventions in patients with obesity. The extended UTAUT model explained a significantly high percentage of variance in acceptance (in total 73.6%). On the basis of the strong association between acceptance and future use, new interventions should focus on these UTAUT predictors to promote the establishment of effective e-mental health interventions for patients with obesity who experience mental health burdens.

摘要

背景

超重和肥胖人数的迅速增加是一个全球性的健康问题。肥胖常常与生理和心理健康负担相关。由于面对面心理治疗存在诸多障碍,一种有前景的方法是利用最新进展并实施创新的电子心理健康干预措施,这些措施能为肥胖患者和医疗保健系统带来诸多益处。

目的

本研究旨在评估肥胖患者对电子心理健康干预措施的接受度,并探索其影响因素。此外,将成熟的技术接受与使用统一理论(UTAUT)模型与扩展的UTAUT模型在接受度的方差解释方面进行比较。

方法

2020年7月至2021年1月在德国进行了一项基于网络的横断面调查研究。入选标准为成年(≥18岁)、可上网、德语水平良好且BMI>30kg/m²(肥胖)。通过专门的社交媒体平台招募了448名肥胖患者(I、II和III级)。评估了各种社会人口统计学、医学和心理健康特征的影响。使用基于UTAUT的修改后问卷检查了与电子健康相关的数据以及对电子心理健康干预措施的接受度。

结果

总体而言,肥胖患者对电子心理健康干预措施的接受度为中等(平均3.18,标准差1.11)。肥胖患者对电子心理健康干预措施的接受度存在显著差异,这取决于肥胖等级、年龄、性别、职业状况和心理健康状况。在扩展的UTAUT回归模型中,接受度由抑郁评分(患者健康问卷-8;β=0.07;P=0.03)、因通过手机或电子邮件随时可用而产生的压力(β=0.06;P=0.02)、对使用数字媒体的信心(β=-0.058;P=0.04)以及UTAUT核心预测因素绩效期望(β=0.45;P<0.001)、努力期望(β=0.22;P<0.001)和社会影响(β=0.27;P<0.001)显著预测。扩展的UTAUT模型(16个预测因素)与限制性UTAUT模型(绩效期望、努力期望和社会影响)之间的比较显示,在解释方差方面存在显著差异(F=2.366;P=0.005)。

结论

UTAUT模型已被证明是预测肥胖患者对电子心理健康干预措施接受度的有价值工具。扩展的UTAUT模型解释了接受度中显著高比例的方差(总计73.6%)。基于接受度与未来使用之间的紧密关联,新的干预措施应关注这些UTAUT预测因素,以促进为有心理健康负担的肥胖患者建立有效的电子心理健康干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e136/8972105/43e349751cca/formative_v6i3e31229_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验