Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.
Department of Image Processing and Computer Graphics, University of Szeged, H-6701 Szeged, Hungary.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2109717119. doi: 10.1073/pnas.2109717119. Epub 2022 Mar 17.
SignificanceTo move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes' optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes' whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies' depth-perception dynamics, limits, and visual behaviors.
意义为了有效地移动,动物必须不断地计算它们相对于现实世界物体的 x、y、z 位置,许多动物都有一对眼睛来实现这一点。但是,由于这个基本的信息限制步骤在活体动物的整个采样矩阵中尚未被研究过,因此,光感受器如何主动采样眼睛的光学图像视差仍不清楚。这项综合性多尺度研究将推动我们从静态图像视差比较到形态动力学主动采样理论的立体视觉的现有理解。它展示了光机械光感受器微跳动如何使超分辨率三维视觉成为可能,并提出了神经计算,以准确预测这些苍蝇的深度感知动态、限制和视觉行为。