Suppr超能文献

电压和钙信号的亚细胞成像揭示体内神经处理过程。

Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo.

作者信息

Yang Helen H, St-Pierre François, Sun Xulu, Ding Xiaozhe, Lin Michael Z, Clandinin Thomas R

机构信息

Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell. 2016 Jun 30;166(1):245-57. doi: 10.1016/j.cell.2016.05.031. Epub 2016 Jun 2.

Abstract

A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise.

摘要

对神经计算的机制性理解需要确定信息在通过神经元和跨越突触时是如何被处理的。然而,在体内测量轴突和树突中的膜电位变化一直具有挑战性。我们利用新型基因编码电压指示剂的体内双光子成像以及钙成像,以亚细胞分辨率测量果蝇视觉系统中感觉刺激诱发的信号。在整个突触中,我们发现光诱发的电压反应在动力学、幅度和符号上有重大转变。我们还描述了不同神经元区室中电压信号和钙信号之间的独特关系,这是局部计算的基础。最后,我们证明,开和关选择性作为跨物种视觉处理的一个关键特征,是通过膜电位向细胞内钙浓度的转变而出现的。通过对电压和钙信号进行成像,以亚细胞分辨率绘制信息流,我们阐明了关键计算发生的位置和方式。

相似文献

2
Voltage to Calcium Transformation Enhances Direction Selectivity in T4 Neurons.电压到钙的转换增强 T4 神经元的方向选择性。
J Neurosci. 2023 Apr 5;43(14):2497-2514. doi: 10.1523/JNEUROSCI.2297-22.2023. Epub 2023 Feb 27.
4
Linear Summation Underlies Direction Selectivity in Drosophila.线性求和是果蝇方向选择性的基础。
Neuron. 2018 Aug 22;99(4):680-688.e4. doi: 10.1016/j.neuron.2018.07.005. Epub 2018 Jul 26.

引用本文的文献

1
Ultrafast optical imaging techniques for exploring rapid neuronal dynamics.用于探索快速神经元动力学的超快光学成像技术。
Neurophotonics. 2025 Jan;12(Suppl 1):S14608. doi: 10.1117/1.NPh.12.S1.S14608. Epub 2025 Feb 27.
5
Adaptation to visual sparsity enhances responses to isolated stimuli.对视觉稀疏性的适应增强了对孤立刺激的反应。
Curr Biol. 2024 Dec 16;34(24):5697-5713.e8. doi: 10.1016/j.cub.2024.10.053. Epub 2024 Nov 21.
7
Predicting visual function by interpreting a neuronal wiring diagram.通过解读神经元接线图预测视觉功能。
Nature. 2024 Oct;634(8032):113-123. doi: 10.1038/s41586-024-07953-5. Epub 2024 Oct 2.

本文引用的文献

2
Dendritic integration: 60 years of progress.树突整合:60 年的进展。
Nat Neurosci. 2015 Dec;18(12):1713-21. doi: 10.1038/nn.4157. Epub 2015 Nov 25.
4
Orientation Selectivity Sharpens Motion Detection in Drosophila.方向选择性增强果蝇的运动检测能力。
Neuron. 2015 Oct 21;88(2):390-402. doi: 10.1016/j.neuron.2015.09.033. Epub 2015 Oct 8.
5
Thermosensory processing in the Drosophila brain.果蝇大脑中的温度感觉处理
Nature. 2015 Mar 19;519(7543):353-7. doi: 10.1038/nature14170. Epub 2015 Mar 4.
6
Benefits of pathway splitting in sensory coding.通路分离在感觉编码中的益处。
J Neurosci. 2014 Sep 3;34(36):12127-44. doi: 10.1523/JNEUROSCI.1032-14.2014.
7
Fly visual course control: behaviour, algorithms and circuits.蝇视觉轨迹控制:行为、算法和电路。
Nat Rev Neurosci. 2014 Sep;15(9):590-9. doi: 10.1038/nrn3799. Epub 2014 Aug 13.
9
Motion-detecting circuits in flies: coming into view.苍蝇中的运动检测电路:逐渐显现。
Annu Rev Neurosci. 2014;37:307-27. doi: 10.1146/annurev-neuro-071013-013931.
10
Candidate neural substrates for off-edge motion detection in Drosophila.果蝇中用于检测边缘外运动的潜在神经基质。
Curr Biol. 2014 May 19;24(10):1062-70. doi: 10.1016/j.cub.2014.03.051. Epub 2014 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验