Pang Michelle M, Chen Feng, Xie Marjorie, Druckmann Shaul, Clandinin Thomas R, Yang Helen H
Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
Curr Biol. 2025 Jan 20;35(2):333-346.e6. doi: 10.1016/j.cub.2024.11.064. Epub 2024 Dec 19.
A critical goal of vision is to detect changes in light intensity, even when these changes are blurred by the spatial resolution of the eye and the motion of the animal. Here, we describe a recurrent neural circuit in Drosophila that compensates for blur and thereby selectively enhances the perceived contrast of moving edges. Using in vivo, two-photon voltage imaging, we measured the temporal response properties of L1 and L2, two cell types that receive direct synaptic input from photoreceptors. These neurons have biphasic responses to brief flashes of light, a hallmark of cells that encode changes in stimulus intensity. However, the second phase was often much larger in area than the first, creating an unusual temporal filter. Genetic dissection revealed that recurrent neural circuitry strongly shapes the second phase of the response, informing the structure of a dynamical model. By applying this model to moving natural images, we demonstrate that rather than veridically representing stimulus changes, this temporal processing strategy systematically enhances them, amplifying and sharpening responses. Comparing the measured responses of L2 to model predictions across both artificial and natural stimuli revealed that L2 tunes its properties as the model predicts to temporally sharpen visual inputs. Since this strategy is tunable to behavioral context, generalizable to any time-varying sensory input, and implementable with a common circuit motif, we propose that it could be broadly used to selectively enhance sharp and salient changes.
视觉的一个关键目标是检测光强度的变化,即使这些变化因眼睛的空间分辨率和动物的运动而变得模糊。在这里,我们描述了果蝇中的一种循环神经回路,它可以补偿模糊,从而选择性地增强对移动边缘的感知对比度。利用体内双光子电压成像技术,我们测量了L1和L2这两种直接接受光感受器突触输入的细胞类型的时间响应特性。这些神经元对短暂的闪光有双相反应,这是编码刺激强度变化的细胞的一个标志。然而,第二阶段的面积通常比第一阶段大得多,形成了一种不寻常的时间滤波器。基因剖析表明,循环神经回路强烈地塑造了反应的第二阶段,为一个动力学模型的结构提供了信息。通过将这个模型应用于移动的自然图像,我们证明,这种时间处理策略不是如实地呈现刺激变化,而是系统地增强它们,放大并锐化反应。比较L2在人工和自然刺激下的测量反应与模型预测结果发现,L2会按照模型预测调整其特性,以便在时间上锐化视觉输入。由于这种策略可根据行为背景进行调整,可推广到任何随时间变化的感觉输入,并且可以用一种常见的回路模式来实现,我们提出它可能被广泛用于选择性地增强尖锐和显著的变化。