Suppr超能文献

果蝇中的一个循环神经回路在时间上锐化视觉输入。

A recurrent neural circuit in Drosophila temporally sharpens visual inputs.

作者信息

Pang Michelle M, Chen Feng, Xie Marjorie, Druckmann Shaul, Clandinin Thomas R, Yang Helen H

机构信息

Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.

Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

出版信息

Curr Biol. 2025 Jan 20;35(2):333-346.e6. doi: 10.1016/j.cub.2024.11.064. Epub 2024 Dec 19.

Abstract

A critical goal of vision is to detect changes in light intensity, even when these changes are blurred by the spatial resolution of the eye and the motion of the animal. Here, we describe a recurrent neural circuit in Drosophila that compensates for blur and thereby selectively enhances the perceived contrast of moving edges. Using in vivo, two-photon voltage imaging, we measured the temporal response properties of L1 and L2, two cell types that receive direct synaptic input from photoreceptors. These neurons have biphasic responses to brief flashes of light, a hallmark of cells that encode changes in stimulus intensity. However, the second phase was often much larger in area than the first, creating an unusual temporal filter. Genetic dissection revealed that recurrent neural circuitry strongly shapes the second phase of the response, informing the structure of a dynamical model. By applying this model to moving natural images, we demonstrate that rather than veridically representing stimulus changes, this temporal processing strategy systematically enhances them, amplifying and sharpening responses. Comparing the measured responses of L2 to model predictions across both artificial and natural stimuli revealed that L2 tunes its properties as the model predicts to temporally sharpen visual inputs. Since this strategy is tunable to behavioral context, generalizable to any time-varying sensory input, and implementable with a common circuit motif, we propose that it could be broadly used to selectively enhance sharp and salient changes.

摘要

视觉的一个关键目标是检测光强度的变化,即使这些变化因眼睛的空间分辨率和动物的运动而变得模糊。在这里,我们描述了果蝇中的一种循环神经回路,它可以补偿模糊,从而选择性地增强对移动边缘的感知对比度。利用体内双光子电压成像技术,我们测量了L1和L2这两种直接接受光感受器突触输入的细胞类型的时间响应特性。这些神经元对短暂的闪光有双相反应,这是编码刺激强度变化的细胞的一个标志。然而,第二阶段的面积通常比第一阶段大得多,形成了一种不寻常的时间滤波器。基因剖析表明,循环神经回路强烈地塑造了反应的第二阶段,为一个动力学模型的结构提供了信息。通过将这个模型应用于移动的自然图像,我们证明,这种时间处理策略不是如实地呈现刺激变化,而是系统地增强它们,放大并锐化反应。比较L2在人工和自然刺激下的测量反应与模型预测结果发现,L2会按照模型预测调整其特性,以便在时间上锐化视觉输入。由于这种策略可根据行为背景进行调整,可推广到任何随时间变化的感觉输入,并且可以用一种常见的回路模式来实现,我们提出它可能被广泛用于选择性地增强尖锐和显著的变化。

相似文献

4
ON and OFF pathways in Drosophila motion vision.果蝇运动视觉中的 ON 和 OFF 通路。
Nature. 2010 Nov 11;468(7321):300-4. doi: 10.1038/nature09545.
8
Color vision in insects: insights from Drosophila.昆虫的色觉:来自果蝇的见解。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Mar;206(2):183-198. doi: 10.1007/s00359-019-01397-3. Epub 2020 Feb 4.
10
The spectral sensitivity of Drosophila photoreceptors.果蝇感光器的光谱灵敏度。
Sci Rep. 2020 Oct 26;10(1):18242. doi: 10.1038/s41598-020-74742-1.

引用本文的文献

本文引用的文献

1
Neuronal parts list and wiring diagram for a visual system.视觉系统的神经元部件列表和布线图。
Nature. 2024 Oct;634(8032):166-180. doi: 10.1038/s41586-024-07981-1. Epub 2024 Oct 2.
2
Neuronal wiring diagram of an adult brain.成人大脑的神经元连接图。
Nature. 2024 Oct;634(8032):124-138. doi: 10.1038/s41586-024-07558-y. Epub 2024 Oct 2.
3
Fine-grained descending control of steering in walking Drosophila.行走果蝇中转向的精细下行控制。
Cell. 2024 Oct 31;187(22):6290-6308.e27. doi: 10.1016/j.cell.2024.08.033. Epub 2024 Sep 17.
5
Multifaceted luminance gain control beyond photoreceptors in Drosophila.果蝇中超越光感受器的多方面亮度增益控制。
Curr Biol. 2023 Jul 10;33(13):2632-2645.e6. doi: 10.1016/j.cub.2023.05.024. Epub 2023 Jun 6.
8
The evolutionary trajectory of drosophilid walking.果蝇行走的进化轨迹。
Curr Biol. 2022 Jul 25;32(14):3005-3015.e6. doi: 10.1016/j.cub.2022.05.039. Epub 2022 Jun 6.
9
Anatomical distribution and functional roles of electrical synapses in Drosophila.果蝇中电突触的解剖分布和功能作用。
Curr Biol. 2022 May 9;32(9):2022-2036.e4. doi: 10.1016/j.cub.2022.03.040. Epub 2022 Apr 5.
10
Binocular mirror-symmetric microsaccadic sampling enables hyperacute 3D vision.双目镜对称微扫视采样可实现超锐 3D 视觉。
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2109717119. doi: 10.1073/pnas.2109717119. Epub 2022 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验