Suppr超能文献

在多层次流行病学分析背景下比较二氧化氮和臭氧空气污染模型的性能。

Comparing the performance of air pollution models for nitrogen dioxide and ozone in the context of a multilevel epidemiological analysis.

作者信息

Butland Barbara K, Samoli Evangelia, Atkinson Richard W, Barratt Benjamin, Beevers Sean D, Kitwiroon Nutthida, Dimakopoulou Konstantina, Rodopoulou Sophia, Schwartz Joel D, Katsouyanni Klea

机构信息

Population Health Research Institute, St George's, University of London, London, United Kingdom.

Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.

出版信息

Environ Epidemiol. 2020 May 13;4(3):e093. doi: 10.1097/EE9.0000000000000093. eCollection 2020 Jun.

Abstract

UNLABELLED

Using modeled air pollutant predictions as exposure variables in epidemiological analyses can produce bias in health effect estimation. We used statistical simulation to estimate these biases and compare different air pollution models for London.

METHODS

Our simulations were based on a sample of 1,000 small geographical areas within London, United Kingdom. "True" pollutant data (daily mean nitrogen dioxide [NO] and ozone [O]) were simulated to include spatio-temporal variation and spatial covariance. All-cause mortality and cardiovascular hospital admissions were simulated from "true" pollution data using prespecified effect parameters for short and long-term exposure within a multilevel Poisson model. We compared: land use regression (LUR) models, dispersion models, LUR models including dispersion output as a spline (hybrid1), and generalized additive models combining splines in LUR and dispersion outputs (hybrid2). Validation datasets (model versus fixed-site monitor) were used to define simulation scenarios.

RESULTS

For the LUR models, bias estimates ranged from -56% to +7% for short-term exposure and -98% to -68% for long-term exposure and for the dispersion models from -33% to -15% and -52% to +0.5%, respectively. Hybrid1 provided little if any additional benefit, but hybrid2 appeared optimal in terms of bias estimates for short-term (-17% to +11%) and long-term (-28% to +11%) exposure and in preserving coverage probability and statistical power.

CONCLUSIONS

Although exposure error can produce substantial negative bias (i.e., towards the null), combining outputs from different air pollution modeling approaches may reduce bias in health effect estimation leading to improved impact evaluation of abatement policies.

摘要

未标注

在流行病学分析中使用模拟的空气污染物预测值作为暴露变量,可能会在健康效应估计中产生偏差。我们使用统计模拟来估计这些偏差,并比较伦敦的不同空气污染模型。

方法

我们的模拟基于英国伦敦内1000个小地理区域的样本。模拟了“真实”的污染物数据(每日平均二氧化氮[NO]和臭氧[O]),以纳入时空变化和空间协方差。在多水平泊松模型中,使用预先指定的短期和长期暴露效应参数,从“真实”污染数据模拟全因死亡率和心血管疾病住院人数。我们比较了:土地利用回归(LUR)模型、扩散模型、将扩散输出作为样条纳入的LUR模型(混合1),以及结合LUR样条和扩散输出的广义相加模型(混合2)。使用验证数据集(模型与固定站点监测器)来定义模拟场景。

结果

对于LUR模型,短期暴露的偏差估计范围为-56%至+7%,长期暴露为-98%至-68%;对于扩散模型,短期暴露偏差估计范围为-33%至-15%,长期暴露为-52%至+0.5%。混合1几乎没有额外益处,但在短期(-17%至+11%)和长期(-28%至+11%)暴露的偏差估计以及保持覆盖概率和统计效力方面,混合2似乎是最优的。

结论

尽管暴露误差可能会产生显著的负偏差(即偏向无效值),但结合不同空气污染建模方法的输出可能会减少健康效应估计中的偏差,从而改进减排政策的影响评估。

相似文献

1
Comparing the performance of air pollution models for nitrogen dioxide and ozone in the context of a multilevel epidemiological analysis.
Environ Epidemiol. 2020 May 13;4(3):e093. doi: 10.1097/EE9.0000000000000093. eCollection 2020 Jun.
5
Measurement error in a multi-level analysis of air pollution and health: a simulation study.
Environ Health. 2019 Feb 14;18(1):13. doi: 10.1186/s12940-018-0432-8.
7
The impact of measurement error in modeled ambient particles exposures on health effect estimates in multilevel analysis: A simulation study.
Environ Epidemiol. 2020 May 27;4(3):e094. doi: 10.1097/EE9.0000000000000094. eCollection 2020 Jun.

引用本文的文献

7
Assessing the health estimation capacity of air pollution exposure prediction models.
Environ Health. 2022 Mar 17;21(1):35. doi: 10.1186/s12940-022-00844-0.
8
Invited Perspective: The and Mortality Dilemma Solved? Almost There!
Environ Health Perspect. 2021 Dec;129(12):121304. doi: 10.1289/EHP10286. Epub 2021 Dec 28.

本文引用的文献

1
An ensemble-based model of PM concentration across the contiguous United States with high spatiotemporal resolution.
Environ Int. 2019 Sep;130:104909. doi: 10.1016/j.envint.2019.104909. Epub 2019 Jul 1.
2
Measurement error in a multi-level analysis of air pollution and health: a simulation study.
Environ Health. 2019 Feb 14;18(1):13. doi: 10.1186/s12940-018-0432-8.
3
The Lancet Countdown on health benefits from the UK Climate Change Act: a modelling study for Great Britain.
Lancet Planet Health. 2018 May;2(5):e202-e213. doi: 10.1016/S2542-5196(18)30067-6.
5
Measurement error in time-series analysis: a simulation study comparing modelled and monitored data.
BMC Med Res Methodol. 2013 Nov 13;13:136. doi: 10.1186/1471-2288-13-136.
6
Effects of ambient air pollution measurement error on health effect estimates in time-series studies: a simulation-based analysis.
J Expo Sci Environ Epidemiol. 2015 Mar-Apr;25(2):160-6. doi: 10.1038/jes.2013.16. Epub 2013 Apr 10.
7
One way coupling of CMAQ and a road source dispersion model for fine scale air pollution predictions.
Atmos Environ (1994). 2012 Nov;59(C):47-58. doi: 10.1016/j.atmosenv.2012.05.034.
8
Confounding and exposure measurement error in air pollution epidemiology.
Air Qual Atmos Health. 2012 Jun;5(2):203-216. doi: 10.1007/s11869-011-0140-9. Epub 2011 Mar 23.
9
Acute and chronic effects of particles on hospital admissions in New-England.
PLoS One. 2012;7(4):e34664. doi: 10.1371/journal.pone.0034664. Epub 2012 Apr 17.
10
Does more accurate exposure prediction necessarily improve health effect estimates?
Epidemiology. 2011 Sep;22(5):680-5. doi: 10.1097/EDE.0b013e3182254cc6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验