Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
Department of Artificial Intelligence, Korea University, Seoul, 02841, Republic of Korea.
Sci Rep. 2022 Mar 17;12(1):4587. doi: 10.1038/s41598-022-08490-9.
Convolutional neural networks (CNNs), which can recognize structural/configuration patterns in data with different architectures, have been studied for feature extraction. However, challenges remain regarding leveraging advanced deep learning methods in BCIs. We focus on problems of small-sized training samples and interpretability of the learned parameters and leverages a semi-supervised generative and discriminative learning framework that effectively utilizes synthesized samples with real samples to discover class-discriminative features. Our framework learns the distributional characteristics of EEG signals in an embedding space using a generative model. By using artificially generated and real EEG signals, our framework finds class-discriminative spatio-temporal feature representations that help to correctly discriminate input EEG signals. It is noteworthy that the framework facilitates the exploitation of real, unlabeled samples to better uncover the underlying patterns inherent in a user's EEG signals. To validate our framework, we conducted experiments comparing our method with conventional linear models by utilizing variants of three existing CNN architectures as generator networks and measuring the performance on three public datasets. Our framework exhibited statistically significant improvements over the competing methods. We investigated the learned network via activation pattern maps and visualized generated artificial samples to empirically justify the stability and neurophysiological plausibility of our model.
卷积神经网络(CNNs)可以使用不同的架构识别数据中的结构/配置模式,已被用于特征提取研究。然而,在脑机接口中利用先进的深度学习方法仍然存在挑战。我们专注于小样本训练和学习参数可解释性的问题,并利用半监督生成和判别学习框架,有效地利用真实样本和合成样本来发现类别判别特征。我们的框架使用生成模型在嵌入空间中学习 EEG 信号的分布特征。通过使用人工生成和真实 EEG 信号,我们的框架找到了有助于正确区分输入 EEG 信号的类别判别时空特征表示。值得注意的是,该框架便于利用真实的、未标记的样本,以更好地揭示用户 EEG 信号中固有的模式。为了验证我们的框架,我们通过利用三种现有 CNN 架构的变体作为生成网络进行实验,比较了我们的方法与传统线性模型的性能,并在三个公共数据集上进行了测量。我们的框架在性能上明显优于竞争方法。我们通过激活模式图研究学习到的网络,并可视化生成的人工样本,以从经验上证明我们模型的稳定性和神经生理学合理性。