Suppr超能文献

利用卷积神经网络学习脑机接口的时间信息。

Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5619-5629. doi: 10.1109/TNNLS.2018.2789927. Epub 2018 Mar 9.

Abstract

Deep learning (DL) methods and architectures have been the state-of-the-art classification algorithms for computer vision and natural language processing problems. However, the successful application of these methods in motor imagery (MI) brain-computer interfaces (BCIs), in order to boost classification performance, is still limited. In this paper, we propose a classification framework for MI data by introducing a new temporal representation of the data and also utilizing a convolutional neural network (CNN) architecture for classification. The new representation is generated from modifying the filter-bank common spatial patterns method, and the CNN is designed and optimized accordingly for the representation. Our framework outperforms the best classification method in the literature on the BCI competition IV-2a 4-class MI data set by 7% increase in average subject accuracy. Furthermore, by studying the convolutional weights of the trained networks, we gain an insight into the temporal characteristics of EEG.

摘要

深度学习(DL)方法和架构一直是计算机视觉和自然语言处理问题的最新分类算法。然而,为了提高分类性能,这些方法在运动想象(MI)脑机接口(BCI)中的成功应用仍然受到限制。在本文中,我们通过引入新的时间表示方法并利用卷积神经网络(CNN)架构进行分类,为 MI 数据提出了一种分类框架。新的表示是通过修改滤波器组公共空间模式方法生成的,并且相应地为表示设计和优化了 CNN。我们的框架在 BCI 竞赛 IV-2a 4 类 MI 数据集上超过了文献中最好的分类方法,平均受试者准确率提高了 7%。此外,通过研究训练网络的卷积权重,我们深入了解 EEG 的时间特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验