Suppr超能文献

通过自然语言处理将功能与残疾的自由文本记录与《国际功能、残疾和健康分类》相联系。

Linking Free Text Documentation of Functioning and Disability to the ICF With Natural Language Processing.

作者信息

Newman-Griffis Denis, Maldonado Jonathan Camacho, Ho Pei-Shu, Sacco Maryanne, Silva Rafael Jimenez, Porcino Julia, Chan Leighton

机构信息

Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States.

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

Front Rehabil Sci. 2021 Nov;2. doi: 10.3389/fresc.2021.742702. Epub 2021 Nov 5.

Abstract

BACKGROUND

Invaluable information on patient functioning and the complex interactions that define it is recorded in free text portions of the Electronic Health Record (EHR). Leveraging this information to improve clinical decision-making and conduct research requires natural language processing (NLP) technologies to identify and organize the information recorded in clinical documentation.

METHODS

We used natural language processing methods to analyze information about patient functioning recorded in two collections of clinical documents pertaining to claims for federal disability benefits from the U.S. Social Security Administration (SSA). We grounded our analysis in the International Classification of Functioning, Disability, and Health (ICF), and used the Activities and Participation domain of the ICF to classify information about functioning in three key areas: mobility, self-care, and domestic life. After annotating functional status information in our datasets through expert clinical review, we trained machine learning-based NLP models to automatically assign ICF categories to mentions of functional activity.

RESULTS

We found that rich and diverse information on patient functioning was documented in the free text records. Annotation of 289 documents for Mobility information yielded 2,455 mentions of Mobility activities and 3,176 specific actions corresponding to 13 ICF-based categories. Annotation of 329 documents for Self-Care and Domestic Life information yielded 3,990 activity mentions and 4,665 specific actions corresponding to 16 ICF-based categories. NLP systems for automated ICF coding achieved over 80% macro-averaged F-measure on both datasets, indicating strong performance across all ICF categories used.

CONCLUSIONS

Natural language processing can help to navigate the tradeoff between flexible and expressive clinical documentation of functioning and standardizable data for comparability and learning. The ICF has practical limitations for classifying functional status information in clinical documentation but presents a valuable framework for organizing the information recorded in health records about patient functioning. This study advances the development of robust, ICF-based NLP technologies to analyze information on patient functioning and has significant implications for NLP-powered analysis of functional status information in disability benefits management, clinical care, and research.

摘要

背景

电子健康记录(EHR)的自由文本部分记录了关于患者功能以及定义该功能的复杂相互作用的宝贵信息。利用这些信息来改善临床决策和开展研究需要自然语言处理(NLP)技术来识别和整理临床文档中记录的信息。

方法

我们使用自然语言处理方法来分析记录在两组与美国社会保障管理局(SSA)联邦残疾福利索赔相关的临床文档中的患者功能信息。我们的分析以《国际功能、残疾和健康分类》(ICF)为基础,并使用ICF的活动和参与领域对三个关键领域的功能信息进行分类:移动性、自我护理和家庭生活。在通过专家临床审查对我们数据集中的功能状态信息进行标注后,我们训练基于机器学习的NLP模型,以自动为功能活动的提及分配ICF类别。

结果

我们发现自由文本记录中记录了关于患者功能的丰富多样的信息。对289份移动性信息文档的标注产生了2455次移动性活动提及以及与13个基于ICF的类别相对应的3176项具体行动。对329份自我护理和家庭生活信息文档的标注产生了3990次活动提及以及与16个基于ICF的类别相对应的4665项具体行动。用于自动ICF编码的NLP系统在两个数据集上的宏观平均F值均超过80%,表明在所使用的所有ICF类别中表现强劲。

结论

自然语言处理有助于在功能的灵活且具表现力的临床文档记录与用于可比性和学习的标准化数据之间进行权衡。ICF在对临床文档中的功能状态信息进行分类方面存在实际局限性,但为整理健康记录中关于患者功能的记录信息提供了一个有价值的框架。本研究推动了强大的、基于ICF的NLP技术的发展,以分析患者功能信息,并且对残疾福利管理、临床护理和研究中功能状态信息的NLP驱动分析具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76f2/9397952/ac8fcb12ab24/fresc-02-742702-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验