Amirian Soheyla, Kekre Ashutosh, Loganathan Boby John, Chavan Vedraj, Kandula Punith, Littlefield Nickolas, Franco Joseph R, Tafti Ahmad P, Ebuenyi Ikenna D
School of Computing, University of Georgia, Athens, GA, 30602 USA.
Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
Glob Ment Health (Camb). 2024 Dec 13;11:e123. doi: 10.1017/gmh.2024.114. eCollection 2024.
Psychosocial rehabilitation and psychosocial disability research have been a longstanding topic in healthcare, demanding continuous exploration and analysis to enhance patient and clinical outcomes. As the prevalence of psychosocial disability research continues to attract scholarly attention, many scientific articles are being published in the literature. These publications offer profound insights into diagnostics, preventative measures, treatment strategies, and epidemiological factors. Computational text mining as a subfield of artificial intelligence (AI) can make a big difference in accurately analyzing the current extensive collection of scientific articles on time, assisting individual scientists in understanding psychosocial disabilities better, and improving how we care for people with these challenges. Leveraging the vast repository of scientific literature available on PubMed, this study employs advanced text mining strategies, including word embeddings and large language models (LLMs) to extract valuable insights, automatically catalyzing research in mental health. It aims to significantly enhance the scientific community's knowledge by creating an extensive textual dataset and advanced computational text mining strategies to explore current trends in psychosocial rehabilitation and psychosocial disability research.
心理社会康复及心理社会残疾研究一直是医疗保健领域的一个长期话题,需要持续探索和分析以改善患者和临床治疗结果。随着心理社会残疾研究的患病率持续吸引学术关注,文献中发表了许多科学文章。这些出版物提供了有关诊断、预防措施、治疗策略和流行病学因素的深刻见解。作为人工智能(AI)子领域的计算文本挖掘,对于及时准确分析当前大量的科学文章、帮助个体科学家更好地理解心理社会残疾以及改善我们对面临这些挑战的人群的护理方式,能够产生重大影响。本研究利用PubMed上可用的大量科学文献库,采用先进的文本挖掘策略,包括词嵌入和大语言模型(LLMs)来提取有价值的见解,自动推动心理健康研究。其目的是通过创建一个广泛的文本数据集和先进的计算文本挖掘策略来探索心理社会康复和心理社会残疾研究的当前趋势,从而显著增强科学界的知识。