Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California 94305, United States.
ACS Chem Neurosci. 2022 Apr 6;13(7):1014-1029. doi: 10.1021/acschemneuro.2c00010. Epub 2022 Mar 18.
Intracerebral hemorrhage (ICH) is devastating among stroke types with high mortality. To date, not a single therapeutic intervention has been successful. Cofilin plays a critical role in inflammation and cell death. In the current study, we embarked on designing and synthesizing a first-in-class small-molecule inhibitor of cofilin to target secondary complications of ICH, mainly neuroinflammation. A series of compounds were synthesized, and two lead compounds SZ-3 and SK-1-32 were selected for further studies. Neuronal and microglial viabilities were assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay using neuroblastoma (SHSY-5Y) and human microglial (HMC-3) cell lines, respectively. Lipopolysaccharide (LPS)-induced inflammation in HMC-3 cells was used for neurotoxicity assay. Other assays include nitric oxide (NO) by Griess reagent, cofilin inhibition by F-actin depolymerization, migration by scratch wound assay, tumor necrosis factor (TNF-α) by enzyme-linked immunosorbent assay (ELISA), protease-activated receptor-1 (PAR-1) by immunocytochemistry and Western blotting (WB), and protein expression levels of several proteins by WB. SK-1-32 increased neuronal/microglial survival, reduced NO, and prevented neurotoxicity. However, SZ-3 showed no effect on neuronal/microglial survival but prevented microglia from LPS-induced inflammation by decreasing NO and preventing neurotoxicity. Therefore, we selected SZ-3 for further molecular studies, as it showed potent anti-inflammatory activities. SZ-3 decreased cofilin severing activity, and its treatment of LPS-activated HMC-3 cells attenuated microglial activation and suppressed migration and proliferation. HMC-3 cells subjected to thrombin, as an in vitro model for hemorrhagic stroke, and treated with SZ-3 after 3 h showed significantly decreased NO and TNF-α, significantly increased protein expression of phosphocofilin, and decreased PAR-1. In addition, SZ-3-treated SHSY-5Y showed a significant increase in cell viability by significantly reducing nuclear factor-κ B (NF-κB), caspase-3, and high-temperature requirement (HtrA2). Together, our results support the novel idea of targeting cofilin to counter neuroinflammation during secondary injury following ICH.
脑出血 (ICH) 在中风类型中是毁灭性的,死亡率很高。迄今为止,还没有一种治疗干预措施取得成功。丝切蛋白在炎症和细胞死亡中起着关键作用。在目前的研究中,我们着手设计和合成一种新型的丝切蛋白小分子抑制剂,以针对 ICH 的继发并发症,主要是神经炎症。合成了一系列化合物,并选择了两个先导化合物 SZ-3 和 SK-1-32 进行进一步研究。使用神经母细胞瘤 (SHSY-5Y) 和人小胶质细胞 (HMC-3) 细胞系分别通过 3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴化物 (MTT) 测定法评估神经元和小胶质细胞活力。使用脂多糖 (LPS) 诱导的 HMC-3 细胞炎症进行神经毒性测定。其他测定包括通过 Griess 试剂测定一氧化氮 (NO)、通过 F-肌动蛋白解聚测定丝切蛋白抑制、通过划痕伤口测定测定迁移、通过酶联免疫吸附测定 (ELISA) 测定肿瘤坏死因子 (TNF-α) 、通过免疫细胞化学和 Western blot (WB) 测定蛋白酶激活受体-1 (PAR-1) ,以及通过 WB 测定几种蛋白质的蛋白表达水平。SK-1-32 增加神经元/小胶质细胞存活,减少 NO,并防止神经毒性。然而,SZ-3 对神经元/小胶质细胞存活没有影响,但通过减少 NO 和防止神经毒性来防止小胶质细胞的 LPS 诱导的炎症。因此,我们选择 SZ-3 进行进一步的分子研究,因为它表现出强大的抗炎活性。SZ-3 降低了丝切蛋白的切割活性,其对 LPS 激活的 HMC-3 细胞的处理减弱了小胶质细胞的激活,并抑制了迁移和增殖。在凝血酶存在下的 HMC-3 细胞,作为出血性中风的体外模型,在用 SZ-3 处理 3 小时后,NO 和 TNF-α 显著减少,磷酸丝切蛋白的蛋白表达显著增加,PAR-1 减少。此外,用 SZ-3 处理的 SHSY-5Y 通过显著减少核因子-κB (NF-κB)、半胱天冬酶-3 和高温需求 (HtrA2) 显著增加细胞活力。总的来说,我们的结果支持靶向丝切蛋白以对抗 ICH 继发损伤后神经炎症的新想法。