IEEE Trans Biomed Eng. 2022 Oct;69(10):3051-3063. doi: 10.1109/TBME.2022.3160618. Epub 2022 Sep 19.
The next generation prosthetic hand that moves and feels like a real hand requires a robust neural interconnection between the human minds and machines.
Here we present a neuroprosthetic system to demonstrate that principle by employing an artificial intelligence (AI) agent to translate the amputee's movement intent through a peripheral nerve interface. The AI agent is designed based on the recurrent neural network (RNN) and could simultaneously decode six degree-of-freedom (DOF) from multichannel nerve data in real-time. The decoder's performance is characterized in motor decoding experiments with three human amputees.
First, we show the AI agent enables amputees to intuitively control a prosthetic hand with individual finger and wrist movements up to 97-98% accuracy. Second, we demonstrate the AI agent's real-time performance by measuring the reaction time and information throughput in a hand gesture matching task. Third, we investigate the AI agent's long-term uses and show the decoder's robust predictive performance over a 16-month implant duration. Conclusion & significance: Our study demonstrates the potential of AI-enabled nerve technology, underling the next generation of dexterous and intuitive prosthetic hands.
要实现像真手一样运动和感知的下一代假肢,就需要在人类大脑和机器之间建立强大的神经连接。
在这里,我们展示了一种神经假体系统,通过使用人工智能 (AI) 代理通过外周神经接口来转换截肢者的运动意图,从而证明这一原理。该 AI 代理是基于递归神经网络 (RNN) 设计的,能够实时从多通道神经数据中同时解码六个自由度 (DOF)。解码器的性能通过对三名人类截肢者的运动解码实验进行了特征描述。
首先,我们表明 AI 代理使截肢者能够直观地控制假肢手,单个手指和手腕的运动精度高达 97-98%。其次,我们通过测量手势匹配任务中的反应时间和信息吞吐量来证明 AI 代理的实时性能。第三,我们研究了 AI 代理的长期使用情况,并展示了解码器在 16 个月的植入期间的强大预测性能。结论和意义:我们的研究表明了 AI 赋能神经技术的潜力,为下一代灵巧而直观的假肢手奠定了基础。