Suppr超能文献

一种具有深度学习手指控制功能的便携式、自给自足的神经义肢手。

A portable, self-contained neuroprosthetic hand with deep learning-based finger control.

机构信息

Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America.

Fasikl Incorporated, Minneapolis, MN, United States of America.

出版信息

J Neural Eng. 2021 Oct 11;18(5). doi: 10.1088/1741-2552/ac2a8d.

Abstract

Deep learning-based neural decoders have emerged as the prominent approach to enable dexterous and intuitive control of neuroprosthetic hands. Yet few studies have materialized the use of deep learning in clinical settings due to its high computational requirements.Recent advancements of edge computing devices bring the potential to alleviate this problem. Here we present the implementation of a neuroprosthetic hand with embedded deep learning-based control. The neural decoder is designed based on the recurrent neural network architecture and deployed on the NVIDIA Jetson Nano-a compacted yet powerful edge computing platform for deep learning inference. This enables the implementation of the neuroprosthetic hand as a portable and self-contained unit with real-time control of individual finger movements.A pilot study with a transradial amputee is conducted to evaluate the proposed system using peripheral nerve signals acquired from implanted intrafascicular microelectrodes. The preliminary experiment results show the system's capabilities of providing robust, high-accuracy (95%-99%) and low-latency (50-120 ms) control of individual finger movements in various laboratory and real-world environments.This work is a technological demonstration of modern edge computing platforms to enable the effective use of deep learning-based neural decoders for neuroprosthesis control as an autonomous system.The proposed system helps pioneer the deployment of deep neural networks in clinical applications underlying a new class of wearable biomedical devices with embedded artificial intelligence.Clinical trial registration: DExterous Hand Control Through Fascicular Targeting (DEFT). Identifier: NCT02994160.

摘要

基于深度学习的神经解码器已成为实现神经义肢手灵巧和直观控制的主要方法。然而,由于其计算要求高,很少有研究将深度学习应用于临床环境中。最近边缘计算设备的进步带来了缓解这个问题的潜力。在这里,我们展示了一种具有嵌入式深度学习控制的神经义肢手的实现。神经解码器基于循环神经网络架构设计,并部署在 NVIDIA Jetson Nano 上,这是一个紧凑而强大的边缘计算平台,用于深度学习推理。这使得神经义肢手能够作为一个便携式和自给自足的单元实现,实现对单个手指运动的实时控制。我们对一名桡骨截肢患者进行了一项初步研究,使用从植入的神经内微电极获得的周围神经信号来评估所提出的系统。初步实验结果表明,该系统能够在各种实验室和真实环境中提供稳健、高精度(95%-99%)和低延迟(50-120ms)的单个手指运动控制。这项工作展示了现代边缘计算平台的技术能力,使基于深度学习的神经解码器能够有效地用于神经义肢控制作为自主系统。所提出的系统有助于为基于人工智能的新型可穿戴生物医学设备中的临床应用部署深度神经网络开创先河。临床试验注册:通过纤维束靶向实现灵巧手控制(DEFT)。标识符:NCT02994160。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验