Suppr超能文献

人类视网膜和视网膜类器官中非编码遗传疾病的细胞特异性顺式调控元件和机制。

Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids.

机构信息

Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA.

Lowy Medical Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.

出版信息

Dev Cell. 2022 Mar 28;57(6):820-836.e6. doi: 10.1016/j.devcel.2022.02.018. Epub 2022 Mar 17.

Abstract

Cis-regulatory elements (CREs) play a critical role in the development and disease-states of all human cell types. In the retina, CREs have been implicated in several inherited disorders. To better characterize human retinal CREs, we performed single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) and single-nucleus RNA sequencing (snRNA-seq) on the developing and adult human retina and on induced pluripotent stem cell (iPSC)-derived retinal organoids. These analyses identified developmentally dynamic, cell-class-specific CREs, enriched transcription-factor-binding motifs, and putative target genes. CREs in the retina and organoids are highly correlated at the single-cell level, and this supports the use of organoids as a model for studying disease-associated CREs. As a proof of concept, we disrupted a disease-associated CRE at 5q14.3, confirming its principal target gene as the miR-9-2 primary transcript and demonstrating its role in neurogenesis and gene regulation in mature glia. This study provides a resource for characterizing human retinal CREs and showcases organoids as a model to study the function of CREs that influence development and disease.

摘要

顺式调控元件(CREs)在所有人类细胞类型的发育和疾病状态中起着关键作用。在视网膜中,CREs 与几种遗传性疾病有关。为了更好地描述人类视网膜 CREs,我们对发育中和成人的人类视网膜以及诱导多能干细胞(iPSC)衍生的视网膜类器官进行了转座酶可及染色质测序(snATAC-seq)和单细胞 RNA 测序(snRNA-seq)。这些分析确定了具有发育动态性、细胞类特异性的 CREs,富含转录因子结合基序和潜在的靶基因。视网膜和类器官中的 CREs 在单细胞水平上高度相关,这支持了使用类器官作为研究与疾病相关 CREs 的模型。作为概念验证,我们破坏了 5q14.3 处与疾病相关的 CRE,证实其主要靶基因是 miR-9-2 初级转录本,并证明了其在成熟胶质细胞中的神经发生和基因调控中的作用。这项研究提供了一个用于描述人类视网膜 CREs 的资源,并展示了类器官作为研究影响发育和疾病的 CRE 功能的模型。

相似文献

1
Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids.
Dev Cell. 2022 Mar 28;57(6):820-836.e6. doi: 10.1016/j.devcel.2022.02.018. Epub 2022 Mar 17.
3
Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq.
Nat Commun. 2024 Aug 10;15(1):6852. doi: 10.1038/s41467-024-50680-8.
5
ATAC-Seq for Assaying Chromatin Accessibility Protocol Using Echinoderm Embryos.
Methods Mol Biol. 2021;2219:253-265. doi: 10.1007/978-1-0716-0974-3_16.
7
Enhancer transcription identifies -regulatory elements for photoreceptor cell types.
Development. 2020 Feb 5;147(3):dev184432. doi: 10.1242/dev.184432.
9
High-Throughput Analysis of Retinal Cis-Regulatory Networks by Massively Parallel Reporter Assays.
Adv Exp Med Biol. 2019;1185:359-364. doi: 10.1007/978-3-030-27378-1_59.
10
Mapping the -regulatory architecture of the human retina reveals noncoding genetic variation in disease.
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):9001-9012. doi: 10.1073/pnas.1922501117. Epub 2020 Apr 7.

引用本文的文献

1
Organoids in Genetic Disorders: from Disease Modeling to Translational Applications.
Stem Cell Rev Rep. 2025 Sep 11. doi: 10.1007/s12015-025-10973-x.
2
Systematic genetic assessment of hearing loss using whole-genome sequencing identifies pathogenic variants.
Exp Mol Med. 2025 Apr;57(4):775-787. doi: 10.1038/s12276-025-01428-x. Epub 2025 Apr 1.
4
Multi-omic spatial effects on high-resolution AI-derived retinal thickness.
Nat Commun. 2025 Feb 4;16(1):1317. doi: 10.1038/s41467-024-55635-7.
5
Genetic Background of Macular Telangiectasia Type 2.
Int J Mol Sci. 2025 Jan 15;26(2):684. doi: 10.3390/ijms26020684.
6
A genome-wide scan of non-coding RNAs and enhancers for refractive error and myopia.
Hum Genet. 2025 Jan;144(1):67-91. doi: 10.1007/s00439-024-02721-x. Epub 2025 Jan 8.
7
Single-cell analysis of the epigenome and 3D chromatin architecture in the human retina.
bioRxiv. 2025 Apr 2:2024.12.28.630634. doi: 10.1101/2024.12.28.630634.
9
Linking Iris Cis-Regulatory Variants to Primary Angle-Closure Glaucoma Via Clinical Imaging and Multiomics.
Invest Ophthalmol Vis Sci. 2024 Dec 2;65(14):18. doi: 10.1167/iovs.65.14.18.
10
Retinal cytoarchitecture is preserved in an organotypic perfused human and porcine eye model.
Acta Neuropathol Commun. 2024 Nov 30;12(1):186. doi: 10.1186/s40478-024-01892-y.

本文引用的文献

2
Effect of selectively knocking down key metabolic genes in Müller glia on photoreceptor health.
Glia. 2021 Aug;69(8):1966-1986. doi: 10.1002/glia.24005. Epub 2021 Apr 9.
3
Serine biosynthesis defect due to haploinsufficiency of PHGDH causes retinal disease.
Nat Metab. 2021 Mar;3(3):366-377. doi: 10.1038/s42255-021-00361-3. Epub 2021 Mar 22.
4
Atoh7-independent specification of retinal ganglion cell identity.
Sci Adv. 2021 Mar 12;7(11). doi: 10.1126/sciadv.abe4983. Print 2021 Mar.
6
ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.
Nat Genet. 2021 Mar;53(3):403-411. doi: 10.1038/s41588-021-00790-6. Epub 2021 Feb 25.
7
Structural Variants Create New Topological-Associated Domains and Ectopic Retinal Enhancer-Gene Contact in Dominant Retinitis Pigmentosa.
Am J Hum Genet. 2020 Nov 5;107(5):802-814. doi: 10.1016/j.ajhg.2020.09.002. Epub 2020 Oct 5.
8
Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution.
Cell. 2020 Sep 17;182(6):1623-1640.e34. doi: 10.1016/j.cell.2020.08.013.
9
The remote enhancer provides transcriptional robustness during retinal ganglion cell development.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21690-21700. doi: 10.1073/pnas.2006888117. Epub 2020 Aug 17.
10
Systemic lipid dysregulation is a risk factor for macular neurodegenerative disease.
Sci Rep. 2020 Jul 22;10(1):12165. doi: 10.1038/s41598-020-69164-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验