Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus, Aalborg, Denmark.
Neurobiology Research Unit (NRU), Rigshospitalet, Copenhagen, Denmark.
Sci Rep. 2022 Mar 18;12(1):4746. doi: 10.1038/s41598-022-08521-5.
Brain network analysis represents a powerful technique to gain insights into the connectivity profile characterizing individuals with different levels of fluid intelligence (Gf). Several studies have used diffusion tensor imaging (DTI) and slow-oscillatory resting-state fMRI (rs-fMRI) to examine the anatomical and functional aspects of human brain networks that support intelligence. In this study, we expand this line of research by investigating fast-oscillatory functional networks. We performed graph theory analyses on resting-state magnetoencephalographic (MEG) signal, in addition to structural brain networks from DTI data, comparing degree, modularity and segregation coefficient across the brain of individuals with high versus average Gf scores. Our results show that high Gf individuals have stronger degree and lower segregation coefficient than average Gf participants in a significantly higher number of brain areas with regards to structural connectivity and to the slower frequency bands of functional connectivity. The opposite result was observed for higher-frequency (gamma) functional networks, with higher Gf individuals showing lower degree and higher segregation across the brain. We suggest that gamma oscillations in more intelligent individuals might support higher local processing in segregated subnetworks, while slower frequency bands would allow a more effective information transfer between brain subnetworks, and stronger information integration.
脑网络分析是一种强大的技术,可以深入了解具有不同流体智力(Gf)水平的个体的连接特征。许多研究已经使用弥散张量成像(DTI)和慢振荡静息态 fMRI(rs-fMRI)来研究支持智力的人类脑网络的解剖和功能方面。在这项研究中,我们通过研究快速振荡功能网络来扩展这一研究领域。我们对静息状态脑磁图(MEG)信号进行了图论分析,除了来自 DTI 数据的结构脑网络,我们还比较了高 Gf 分数个体与平均 Gf 个体之间的大脑中不同脑区的度数、模块性和分离系数。我们的研究结果表明,与平均 Gf 参与者相比,高 Gf 个体在结构连接和功能连接的较慢频带中,具有更强的度数和更低的分离系数。在更高频(伽马)功能网络中观察到相反的结果,更高 Gf 的个体在大脑中表现出更低的度数和更高的分离。我们认为,更聪明的个体中的伽马振荡可能支持在分离的子网中进行更高的局部处理,而较慢的频带将允许在大脑子网之间进行更有效的信息传输,并实现更强的信息整合。