Frontiers Science Center for Flexible Electrons, Xi'an institute of Flexible Electrons (IFE) and Xi'an institute of Biomedical Materials and Engineering Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
Drug Delivery, Disposition and Dynamics, Monash institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
Adv Healthc Mater. 2022 Jun;11(12):e2200076. doi: 10.1002/adhm.202200076. Epub 2022 Apr 3.
Porous silicon nanoparticles (pSiNPs) are widely utilized as drug carriers due to their excellent biocompatibility, large surface area, and versatile surface chemistry. However, the dispersion in pore size and biodegradability of pSiNPs arguably have hindered the application of pSiNPs for controlled drug release. Here, a step-changing solution to this problem is described involving the design, synthesis, and application of three different linker-drug conjugates comprising anticancer drug doxorubicin (DOX) and different stimulus-cleavable linkers (SCLs) including the photocleavable linker (ortho-nitrobenzyl), pH-cleavable linker (hydrazone), and enzyme-cleavable linker (β-glucuronide). These SCL-DOX conjugates are covalently attached to the surface of pSiNP via copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC, i.e., click reaction) to afford pSiNP-SCL-DOXs. The mass loading of the covalent conjugation approach for pSiNP-SCL-DOX reaches over 250 µg of DOX per mg of pSiNPs, which is notably twice the mass loading achieved by noncovalent loading. Moreover, the covalent conjugation between SCL-DOX and pSiNPs endows the pSiNPs with excellent stability and highly controlled release behavior. When tested in both in vitro and in vivo tumor models, the pSiNP-SCL-DOXs induces excellent tumor growth inhibition.
多孔硅纳米颗粒(pSiNPs)由于其出色的生物相容性、大的表面积和多样的表面化学性质,被广泛用作药物载体。然而,pSiNPs 的孔径分散性和生物降解性问题,可能限制了其在控制药物释放方面的应用。在这里,我们描述了一种针对该问题的突破性解决方案,设计、合成并应用了三种不同的连接子-药物偶联物,包含抗癌药物阿霉素(DOX)和不同的刺激响应性连接子(SCLs),包括光裂解连接子(邻硝基苄基)、pH 裂解连接子(腙)和酶裂解连接子(β-葡萄糖醛酸苷)。这些 SCL-DOX 偶联物通过铜(I)催化的叠氮-炔烃环加成(CuAAC,即点击反应)共价连接到 pSiNP 表面,得到 pSiNP-SCL-DOX。共价偶联方法对 pSiNP-SCL-DOX 的质量负载超过 250µg DOX/mg pSiNPs,这明显是通过非共价负载实现的两倍。此外,SCL-DOX 与 pSiNPs 之间的共价键合赋予了 pSiNPs 出色的稳定性和高度可控的释放行为。在体外和体内肿瘤模型中进行测试时,pSiNP-SCL-DOX 可显著抑制肿瘤生长。