Suppr超能文献

豆科植物中转化酶的全基因组鉴定,重点关注干旱条件下豌豆种子中转化酶的转录调控。

Genome-wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought.

作者信息

Morin Amélie, Kadi Fadia, Porcheron Benoit, Vriet Cécile, Maurousset Laurence, Lemoine Rémi, Pourtau Nathalie, Doidy Joan

机构信息

Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions", Poitiers, France.

出版信息

Physiol Plant. 2022 Mar;174(2):e13673. doi: 10.1111/ppl.13673.

Abstract

Invertases are key enzymes for carbon metabolism, cleaving sucrose into energy-rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes. Here, we performed a systematic search for invertase families in 16 Fabaceae genomes. For instance, we identified 19 invertase genes in the model plant Medicago and 17 accessions in the agronomic crop Pisum sativum. Our comprehensive phylogenetic analysis sets a milestone for the scientific community as we propose a new nomenclature to correctly name plant invertases. Thus, neutral invertases were classified into four clades of cytosolic invertase (CINV). Acid invertases were classified into two cell wall invertase clades (CWINV) and two vacuolar invertase clades (VINV). Then, we explored transcriptional regulation of the pea invertase family, focusing on seed development and water stress. Invertase expression decreased sharply from embryogenesis to seed-filling stages, consistent with higher sucrose and lower monosaccharide contents. The vacuolar invertase PsVINV1.1 clearly marked the transition between both developmental stages. We hypothesize that the predominantly expressed cell wall invertase, PsCWINV1.2, may drive sucrose unloading towards developing seeds. The same candidates, PsVINV1.1 and PsCWINV1.2, were also regulated by water deficit during embryonic stage. We suggest that PsVINV1.1 along with vacuolar sugar transporters maintain cellular osmotic pressure and PsCWINV1.2 control hexose provision, thereby ensuring embryo survival in drought conditions. Altogether, our findings provide novel insights into the regulation of plant carbon metabolism in a challenging environment.

摘要

转化酶是碳代谢的关键酶,可将蔗糖分解为富含能量和具有信号传导作用的代谢产物葡萄糖和果糖。转化酶在植物发育和应激反应中起关键作用,决定种子产量和品质。在此背景下,豆科植物中转化酶基因家族的种类极为稀少。在此,我们对16个豆科植物基因组中的转化酶家族进行了系统搜索。例如,我们在模式植物苜蓿中鉴定出19个转化酶基因,在农作物豌豆中鉴定出17个基因。我们全面的系统发育分析为科学界树立了一个里程碑,因为我们提出了一种新的命名法来正确命名植物转化酶。因此,中性转化酶被分为四个胞质转化酶(CINV)分支。酸性转化酶被分为两个细胞壁转化酶分支(CWINV)和两个液泡转化酶分支(VINV)。然后,我们研究了豌豆转化酶家族的转录调控,重点关注种子发育和水分胁迫。从胚胎发生到种子充实阶段,转化酶表达急剧下降,这与较高的蔗糖含量和较低的单糖含量一致。液泡转化酶PsVINV1.1清楚地标志着两个发育阶段之间的转变。我们推测,主要表达的细胞壁转化酶PsCWINV1.2可能驱动蔗糖向发育中的种子卸载。同样的候选基因PsVINV1.1和PsCWINV1.2在胚胎阶段也受到水分亏缺的调控。我们认为,PsVINV1.1与液泡糖转运蛋白一起维持细胞渗透压,而PsCWINV1.2控制己糖供应,从而确保胚胎在干旱条件下存活。总之,我们的研究结果为在具有挑战性的环境中植物碳代谢的调控提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验