Fernandes Samuel B, Casstevens Terry M, Bradbury Peter J, Lipka Alexander E
Dep. of Crop Sciences, Univ. of Illinois Urbana-Champaign, Urbana, IL, USA.
Institute for Genomic Diversity, Cornell Univ., Ithaca, NY, USA.
Plant Genome. 2022 Jun;15(2):e20200. doi: 10.1002/tpg2.20200. Epub 2022 Mar 20.
The ability to accurately quantify the simultaneous effect of multiple genomic loci on multiple traits is now possible due to current and emerging high-throughput genotyping and phenotyping technologies. To date, most efforts to quantify these genotype-to-phenotype relationships have focused on either multi-trait models that test a single marker at a time or multi-locus models that quantify associations with a single trait. Therefore, the purpose of this study was to compare the performance of a multi-trait, multi-locus stepwise (MSTEP) model selection procedure we developed to (a) a commonly used multi-trait single-locus model and (b) a univariate multi-locus model. We used real marker data in maize (Zea mays L.) and soybean (Glycine max L.) to simulate multiple traits controlled by various combinations of pleiotropic and nonpleiotropic quantitative trait nucleotides (QTNs). In general, we found that both multi-trait models outperformed the univariate multi-locus model, especially when analyzing a trait of low heritability. For traits controlled by either a combination of pleiotropic and nonpleiotropic QTNs or a large number of QTNs (i.e., 50), our MSTEP model often outperformed at least one of the two alternative models. When applied to the analysis of two tocochromanol-related traits in maize grain, MSTEP identified the same peak-associated marker that has been reported in a previous study. We therefore conclude that MSTEP is a useful addition to the suite of statistical models that are commonly used to gain insight into the genetic architecture of agronomically important traits.
由于当前和新兴的高通量基因分型和表型分析技术,现在有可能准确量化多个基因组位点对多个性状的同时影响。迄今为止,大多数量化这些基因型与表型关系的努力都集中在一次测试一个标记的多性状模型或量化与单个性状关联的多位点模型上。因此,本研究的目的是比较我们开发的多性状、多位点逐步(MSTEP)模型选择程序与(a)常用的多性状单一位点模型和(b)单变量多位点模型的性能。我们使用玉米(Zea mays L.)和大豆(Glycine max L.)中的真实标记数据来模拟由多效性和非多效性数量性状核苷酸(QTN)的各种组合控制的多个性状。总体而言,我们发现这两种多性状模型都优于单变量多位点模型,尤其是在分析低遗传力性状时。对于由多效性和非多效性QTN组合或大量QTN(即50个)控制的性状,我们的MSTEP模型通常至少优于两种替代模型中的一种。当应用于分析玉米籽粒中与生育三烯酚相关的两个性状时,MSTEP识别出了先前研究中报道的相同的峰值相关标记。因此,我们得出结论,MSTEP是一套常用于深入了解重要农艺性状遗传结构的统计模型中的一个有用补充。