Suppr超能文献

国际儿科研究中的纵向生长数据推断:CDC 参考标准是否足够?

Imputing Longitudinal Growth Data in International Pediatric Studies: Does CDC Reference Suffice?

机构信息

Center for Computational Health IBM Research, NY, NY.

Institute of Biomedicine and Population Health Research Centre, University of Turku and Department of Pediatrics, Turku University Hospital, Turku, Finland.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:754-762. eCollection 2021.

Abstract

This study investigates a missing value imputation approach for longitudinal growth data in pediatric studies from multiple countries. We analyzed a combined cohort from five natural history studies of type 1 diabetes (T1D) in the US and EU with longitudinal growth measurements for 23,201 subjects. We developed a multiple imputation methodology using LMS parameters of CDC reference data. We measured imputation errors on both combined and individual cohorts using mean absolute percentage error (MAPE) and normalized root-mean-square error (NRMSE). Our results show low imputation errors using CDC reference. Overall height imputation errors were lower than for weight. The largest MAPE for weight and height among all age groups was 4.8% and 1.7%, respectively. When comparing performance between CDC reference and country-specific growth charts, we found no significant differences for height (CDC vs. German: p =0.993, CDC vs. Swedish: p=0.368) and for weight (CDC vs. Swedish: p=0.513) for all ages.

摘要

本研究探讨了一种针对多国家儿科研究中纵向生长数据的缺失值插补方法。我们分析了来自美国和欧盟的 5 项 1 型糖尿病(T1D)自然史研究的合并队列,其中包含 23201 名受试者的纵向生长测量数据。我们使用 CDC 参考数据的 LMS 参数开发了一种多重插补方法。我们使用平均绝对百分比误差(MAPE)和归一化均方根误差(NRMSE)在合并队列和个体队列上测量插补误差。结果表明,使用 CDC 参考值的插补误差较小。总体身高的插补误差低于体重。所有年龄组中,体重和身高的最大 MAPE 分别为 4.8%和 1.7%。在比较 CDC 参考值和特定国家生长图表之间的性能时,我们发现所有年龄段的身高(CDC 与德国:p=0.993,CDC 与瑞典:p=0.368)和体重(CDC 与瑞典:p=0.513)之间均无显著差异。

相似文献

本文引用的文献

2
Multiple Imputation When Rate of Change is the Outcome of Interest.当变化率是感兴趣的结果时的多重填补
J Mod Appl Stat Methods. 2016 May;15(1):160-192. doi: 10.22237/jmasm/1462075740.
4
A Swedish approach to the prevention of type 1 diabetes.一种预防1型糖尿病的瑞典方法。
Pediatr Diabetes. 2016 Jul;17 Suppl 22(Suppl 22):73-7. doi: 10.1111/pedi.12325.
6
MissForest--non-parametric missing value imputation for mixed-type data.MissForest--用于混合类型数据的非参数缺失值插补。
Bioinformatics. 2012 Jan 1;28(1):112-8. doi: 10.1093/bioinformatics/btr597. Epub 2011 Oct 28.
7
Missing data methods in longitudinal studies: a review.纵向研究中的缺失数据方法:综述
Test (Madr). 2009 May 1;18(1):1-43. doi: 10.1007/s11749-009-0138-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验