Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Department of Biomedical Informatics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA.
Clin Pharmacol Ther. 2024 Apr;115(4):860-870. doi: 10.1002/cpt.3184. Epub 2024 Jan 31.
Selective serotonin reuptake inhibitors (SSRI) are the first-line pharmacologic treatment for anxiety and depressive disorders in children and adolescents. Many patients experience side effects that are difficult to predict, are associated with significant morbidity, and can lead to treatment discontinuation. Variation in SSRI pharmacokinetics could explain differences in treatment outcomes, but this is often overlooked as a contributing factor to SSRI tolerability. This study evaluated data from 288 escitalopram-treated and 255 sertraline-treated patients ≤ 18 years old to develop machine learning models to predict side effects using electronic health record data and Bayesian estimated pharmacokinetic parameters. Trained on a combined cohort of escitalopram- and sertraline-treated patients, a penalized logistic regression model achieved an area under the receiver operating characteristic curve (AUROC) of 0.77 (95% confidence interval (CI): 0.66-0.88), with 0.69 sensitivity (95% CI: 0.54-0.86), and 0.82 specificity (95% CI: 0.72-0.87). Medication exposure, clearance, and time since the last dose increase were among the top features. Individual escitalopram and sertraline models yielded an AUROC of 0.73 (95% CI: 0.65-0.81) and 0.64 (95% CI: 0.55-0.73), respectively. Post hoc analysis showed sertraline-treated patients with activation side effects had slower clearance (P = 0.01), which attenuated after accounting for age (P = 0.055). These findings raise the possibility that a machine learning approach leveraging pharmacokinetic data can predict escitalopram- and sertraline-related side effects. Clinicians may consider differences in medication pharmacokinetics, especially during dose titration and as opposed to relying on dose, when managing side effects. With further validation, application of this model to predict side effects may enhance SSRI precision dosing strategies in youth.
选择性 5-羟色胺再摄取抑制剂(SSRIs)是治疗儿童和青少年焦虑和抑郁障碍的一线药物。许多患者会出现难以预测的副作用,这些副作用与严重的发病率相关,并可能导致治疗中断。SSRIs 药代动力学的差异可能解释了治疗结果的差异,但这通常被忽视为 SSRIs 耐受性的一个影响因素。本研究评估了 288 名接受依地普仑治疗和 255 名接受舍曲林治疗的≤18 岁患者的数据,以开发使用电子健康记录数据和贝叶斯估计药代动力学参数预测副作用的机器学习模型。在依地普仑和舍曲林联合治疗患者的队列中进行训练后,惩罚逻辑回归模型的接收者操作特征曲线(AUROC)为 0.77(95%置信区间(CI):0.66-0.88),灵敏度为 0.69(95%CI:0.54-0.86),特异性为 0.82(95%CI:0.72-0.87)。药物暴露、清除率和上次剂量增加后的时间是最重要的特征之一。依地普仑和舍曲林的个体模型的 AUROC 分别为 0.73(95%CI:0.65-0.81)和 0.64(95%CI:0.55-0.73)。事后分析显示,出现激活副作用的舍曲林治疗患者的清除率较慢(P=0.01),在考虑年龄因素后(P=0.055),这种差异减弱。这些发现表明,利用药代动力学数据的机器学习方法可以预测依地普仑和舍曲林相关的副作用。在管理副作用时,临床医生可能会考虑药物药代动力学的差异,尤其是在剂量调整期间,而不是依赖于剂量。在进一步验证后,这种模型在预测副作用方面的应用可能会增强青少年 SSRI 的精准剂量策略。