Suppr超能文献

疾病防控策略:生物-行为-干预计算信息学框架。

Strategies for Disease Containment: A Biological-Behavioral-Intervention Computational Informatics Framework.

机构信息

NSF-Whitaker Center for Operations Research in Medicine and HealthCare, Georgia Institute of Technology, Atlanta, GA.

Strategic National Stockpile, U.S. Department of Health and Human Services. Washington DC.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:687-696. eCollection 2021.

Abstract

In this study, we describe the development and use of a biological-behavior-intervention computational informatics framework that combines disease modelling for infectious virus with stratifications for social behavior and employment, and resource logistics. The framework incorporates heterogeneous group behavior and interaction dynamics, and optimizes intervention and resources for effective containment. We demonstrate its usage by analyzing and optimizing containment strategies for the 2014-2016 West Africa Ebola outbreak, and its implementation for responses to the 2020 COVID-19 pandemic in the United States. Our analysis shows that timely action within 1.5 months from the onset of confirmed cases can cut down 90% of overall infections and bring rapid containment within 6-8 months. The additional medical resources required are minor and would ensure proper treatment and quarantine of patients while reducing the risk of infections among healthcare workers. The benefit (in infection / death control) would be reduced by 10 to over 100 fold and time to containment would increase by 2-4 fold when intervention and medical resources are injected within 5 months. In contrast, the additional resources needed to bring down the overall infection in a delayed intervention are significant, with inferior results. The disease module can be tailored for different pathogens. It expands the well-used SEIR model to include social and intervention activities, asymptomatic and post-recovery transmission, hospitalization, outcome of recovery, and funeral events. The model also examines the transmission rate of health care workers and allows for heterogenous infection factors among different groups. It also captures time-variant human behavior during the horizon of the outbreak. The framework optimizes the intervention timeline and resource allocation during an infectious disease outbreak and offers insights on how resource availability in time and quantity can affect the disease trends and containment significantly. This can inform policy, disease management and resource allocation. While focusing on bed availability for quarantine and treatment appears to be simplistic, their necessity for Ebola responses cannot be overemphasized. We link these insights to a web-based tool to provide quick and intuitive observations for decision making and investigation of the disease outbreak situation. Subsequent use of the system to determine the optimal timing and effectiveness and tradeoffs analysis of various non-pharmaceutical intervention strategies for COVID-19 provide a foundation for policy makers to execute the first-step response. These results have been implemented on the ground since March 2020. The web-based tool pinpoints accurately the import of disease from global travels and associated disease spread and health burdens. This prospectively affirms the importance of such a real-time computational system, and its availability before onset of a pandemic.

摘要

在这项研究中,我们描述了一种生物-行为-干预计算信息学框架的开发和使用,该框架结合了传染病模型,以及社会行为和就业分层,以及资源物流。该框架结合了异质群体行为和相互作用动态,并为有效遏制提供了干预和资源优化。我们通过分析和优化 2014-2016 年西非埃博拉疫情的遏制策略,并将其应用于美国 2020 年 COVID-19 疫情的应对措施,展示了其使用。我们的分析表明,从确诊病例开始的 1.5 个月内及时采取行动,可以减少 90%的总感染人数,并在 6-8 个月内迅速遏制疫情。所需的额外医疗资源很少,可以确保对患者进行适当的治疗和隔离,同时降低医护人员感染的风险。如果在 5 个月内注入干预措施和医疗资源,那么获益(感染/死亡控制)将减少 10 倍以上,控制时间将增加 2-4 倍。相比之下,延迟干预降低总感染所需的额外资源是巨大的,而且效果也较差。疾病模块可以针对不同的病原体进行定制。它扩展了常用的 SEIR 模型,包括社会和干预活动、无症状和康复后传播、住院、康复结果和葬礼事件。该模型还检查了医护人员的传播率,并允许不同群体之间存在异质感染因素。它还捕获了疫情爆发期间的时变人类行为。该框架在传染病爆发期间优化了干预时间表和资源分配,并提供了有关资源可用性如何及时和数量上显著影响疾病趋势和遏制的见解。这可以为政策、疾病管理和资源分配提供信息。虽然关注隔离和治疗的床位可用性似乎过于简单,但在埃博拉疫情应对中,它们的必要性不容忽视。我们将这些见解与一个基于网络的工具联系起来,为决策提供快速直观的观察,并调查疾病爆发情况。随后,该系统用于确定 COVID-19 各种非药物干预策略的最佳时机、有效性和权衡分析,为决策者执行第一步应对措施提供了基础。自 2020 年 3 月以来,这些结果已经在实地实施。基于网络的工具准确地指出了来自全球旅行的疾病输入以及相关的疾病传播和健康负担。这前瞻性地肯定了这种实时计算系统的重要性,以及在大流行之前它的可用性。

相似文献

4
Considerations for use of Ebola vaccine during an emergency response.在紧急响应期间使用埃博拉疫苗的注意事项。
Vaccine. 2019 Nov 15;37(48):7190-7200. doi: 10.1016/j.vaccine.2017.08.058. Epub 2017 Sep 7.

引用本文的文献

本文引用的文献

1
Strategies for Vaccine Prioritization and Mass Dispensing.疫苗优先排序和大规模分发策略。
Vaccines (Basel). 2021 May 14;9(5):506. doi: 10.3390/vaccines9050506.
6
A three-scale network model for the early growth dynamics of 2014 west Africa ebola epidemic.2014年西非埃博拉疫情早期增长动态的三尺度网络模型
PLoS Curr. 2014 Nov 13;6:ecurrents.outbreaks.c6efe8274dc55274f05cbcb62bbe6070. doi: 10.1371/currents.outbreaks.c6efe8274dc55274f05cbcb62bbe6070.
7
Estimating the Reproduction Number of Ebola Virus (EBOV) During the 2014 Outbreak in West Africa.估算2014年西非埃博拉病毒(EBOV)疫情期间的繁殖数
PLoS Curr. 2014 Sep 2;6:ecurrents.outbreaks.91afb5e0f279e7f29e7056095255b288. doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288.
8
Assessing the international spreading risk associated with the 2014 west african ebola outbreak.评估与2014年西非埃博拉疫情相关的国际传播风险。
PLoS Curr. 2014 Sep 2;6:ecurrents.outbreaks.cd818f63d40e24aef769dda7df9e0da5. doi: 10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验