Suppr超能文献

疫苗优先排序和大规模分发策略。

Strategies for Vaccine Prioritization and Mass Dispensing.

作者信息

Lee Eva K, Li Zhuonan L, Liu Yifan K, LeDuc James

机构信息

NSF-Whitaker Center for Operations Research in Medicine and HealthCare, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA.

出版信息

Vaccines (Basel). 2021 May 14;9(5):506. doi: 10.3390/vaccines9050506.

Abstract

We propose a system that helps decision makers during a pandemic find, in real time, the mass vaccination strategies that best utilize limited medical resources to achieve fast containments and population protection. Our general-purpose framework integrates into a single computational platform a multi-purpose compartmental disease propagation model, a human behavior network, a resource logistics model, and a stochastic queueing model for vaccination operations. We apply the modeling framework to the current COVID-19 pandemic and derive an optimal trigger for switching from a prioritized vaccination strategy to a non-prioritized strategy so as to minimize the overall attack rate and mortality rate. When vaccine supply is limited, such a mixed vaccination strategy is broadly effective. Our analysis suggests that delays in vaccine supply and inefficiencies in vaccination delivery can substantially impede the containment effort. Employing an optimal mixed strategy can significantly reduce the attack and mortality rates. The more infectious the virus, the earlier it helps to open the vaccine to the public. As vaccine efficacy decreases, the attack and mortality rates rapidly increase by multiples; this highlights the importance of early vaccination to reduce spreading as quickly as possible to lower the chances for further mutations to evolve and to reduce the excessive healthcare burden. To maximize the protective effect of available vaccines, of equal importance are determining the optimal mixed strategy and implementing effective on-the-ground dispensing. The optimal mixed strategy is quite robust against variations in model parameters and can be implemented readily in practice. Studies with our holistic modeling framework strongly support the urgent need for early vaccination in combating the COVID-19 pandemic. Our framework permits rapid custom modeling in practice. Additionally, it is generalizable for different types of infectious disease outbreaks, whereby a user may determine for a given type the effects of different interventions including the optimal switch trigger.

摘要

我们提出了一种系统,可在大流行期间帮助决策者实时找到最佳利用有限医疗资源以实现快速遏制和人群保护的大规模疫苗接种策略。我们的通用框架将多用途的分区疾病传播模型、人类行为网络、资源物流模型和疫苗接种操作的随机排队模型集成到一个计算平台中。我们将该建模框架应用于当前的新冠疫情,并得出从优先接种策略切换到非优先策略的最佳触发点,以尽量降低总体感染率和死亡率。当疫苗供应有限时,这种混合疫苗接种策略具有广泛的有效性。我们的分析表明,疫苗供应延迟和疫苗接种交付效率低下会严重阻碍遏制工作。采用最优混合策略可显著降低感染率和死亡率。病毒传染性越强,就越有助于尽早向公众开放疫苗接种。随着疫苗效力下降,感染率和死亡率会迅速成倍上升;这凸显了尽早接种疫苗以尽快减少传播的重要性,从而降低进一步变异的可能性,并减轻过度的医疗负担。为了使可用疫苗的保护效果最大化,确定最优混合策略和实施有效的现场分发同样重要。最优混合策略对模型参数的变化具有很强的鲁棒性,并且可以在实践中轻松实施。使用我们的整体建模框架进行的研究有力地支持了在抗击新冠疫情中尽早接种疫苗的迫切需求。我们的框架允许在实践中进行快速定制建模。此外,它可推广用于不同类型的传染病爆发,用户可以针对给定类型确定不同干预措施的效果,包括最优切换触发点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e00/8157047/66e4c2611661/vaccines-09-00506-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验