Suppr超能文献

利用多流转换器从纵向医疗保健数据中识别阿片类药物使用障碍。

Identifying Opioid Use Disorder from Longitudinal Healthcare Data using a Multi-stream Transformer.

机构信息

Institute for Biomedical Informatics.

Department of Computer Science.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:476-485. eCollection 2021.

Abstract

Opioid Use Disorder (OUD) is a public health crisis costing the US billions of dollars annually in healthcare, lost workplace productivity, and crime. Analyzing longitudinal healthcare data is critical in addressing many real-world problems in healthcare. Leveraging the real-world longitudinal healthcare data, we propose a novel multi-stream transformer model called MUPOD for OUD identification. MUPOD is designed to simultaneously analyze multiple types of healthcare data streams, such as medications and diagnoses, by attending to segments within and across these data streams. Our model tested on the data from 392,492 patients with long-term back pain problems showed significantly better performance than the traditional models and recently developed deep learning models.

摘要

阿片类药物使用障碍(OUD)是一场公共健康危机,每年给美国造成数十亿美元的医疗护理、工作场所生产力损失和犯罪成本。分析纵向医疗保健数据对于解决医疗保健领域的许多实际问题至关重要。我们利用真实世界的纵向医疗保健数据,提出了一种名为 MUPOD 的新型多流转换器模型,用于 OUD 识别。MUPOD 旨在通过关注这些数据流内部和跨数据流的各个部分,同时分析多种类型的医疗保健数据流,如药物和诊断。我们在 392492 名长期背痛患者的数据上进行了测试,结果表明,该模型的性能明显优于传统模型和最近开发的深度学习模型。

相似文献

本文引用的文献

3
BEHRT: Transformer for Electronic Health Records.BEHRT:电子健康记录的转换器。
Sci Rep. 2020 Apr 28;10(1):7155. doi: 10.1038/s41598-020-62922-y.
9
Treatment utilization among persons with opioid use disorder in the United States.美国阿片类药物使用障碍患者的治疗利用情况。
Drug Alcohol Depend. 2016 Dec 1;169:117-127. doi: 10.1016/j.drugalcdep.2016.10.015. Epub 2016 Oct 19.
10
Big data analytics in healthcare: promise and potential.医疗保健中的大数据分析:前景与潜力。
Health Inf Sci Syst. 2014 Feb 7;2:3. doi: 10.1186/2047-2501-2-3. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验