AmeriHealth Caritas Family of Companies, 200 Stevens Dr, Philadelphia, PA 19113. Email:
Am J Manag Care. 2021 Apr;27(4):148-154. doi: 10.37765/ajmc.2021.88617.
Medicaid managed care organizations are developing comprehensive strategies to reduce the impact of opioid use disorder (OUD) among their members. The goals of this study were to develop and validate a predictive model of OUD and to predict future OUD diagnosis, resulting in proactive, person-centered outreach.
We utilized machine learning methodology to select a multivariate logistic regression and identify predictors.
Using 2016-2018 data, we used a staged approach to test and validate the predictive accuracy of our model. We identified OUD, the dependent variable, using an industry-standard definition. We included a series of patient demographic, chronic condition, social determinants of health (SDOH), opioid-related, and health utilization indicators captured in administrative data.
Caucasian (odds ratio [OR], 1.65), male (OR, 1.57), and younger (aged 40-64 years compared with 18-39 years: OR, 0.75) members had greater odds of being diagnosed with an OUD. Members with an SDOH vulnerability had 26% higher odds than those without a documented issue. From a prescribing perspective, we found that having an opioid dose of 120 morphine milligram equivalents and contiguous 5-day supply increased odds of OUD by 1.87 times, and an opioid supply of 30 days or longer increased the odds of OUD by 1.56 times.
We built the necessary machine learning infrastructure to identify members with greater than 50% probability of developing OUD. The generated list strategically informs and guides person-centered care and interventions. Through application of these results, we strive to proactively reduce OUD-related structural barriers and prevent OUD from occurring.
医疗补助管理式医疗组织正在制定综合策略,以减少其成员中阿片类药物使用障碍(OUD)的影响。本研究的目的是开发和验证 OUD 的预测模型,并预测未来的 OUD 诊断,从而实现主动的、以患者为中心的拓展。
我们利用机器学习方法选择多元逻辑回归并确定预测因子。
使用 2016-2018 年的数据,我们采用分阶段的方法来测试和验证我们模型的预测准确性。我们使用行业标准定义来确定 OUD,即因变量。我们纳入了一系列患者人口统计学、慢性疾病、健康的社会决定因素(SDOH)、阿片类药物相关和健康利用指标,这些指标都来自于行政数据。
白人(优势比[OR],1.65)、男性(OR,1.57)和较年轻(40-64 岁与 18-39 岁相比:OR,0.75)的患者更有可能被诊断为 OUD。有社会决定因素脆弱性的患者比没有记录问题的患者发生 OUD 的可能性高 26%。从处方的角度来看,我们发现阿片类药物剂量为 120 吗啡毫克当量和连续 5 天的供应量增加了 1.87 倍的 OUD 发生几率,而阿片类药物供应量为 30 天或更长时间增加了 1.56 倍的 OUD 发生几率。
我们建立了必要的机器学习基础设施,以识别出有超过 50%的可能性发生 OUD 的患者。生成的列表战略性地告知和指导以患者为中心的护理和干预措施。通过应用这些结果,我们努力主动减少与 OUD 相关的结构性障碍,并预防 OUD 的发生。